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Introduction.

We first recall the definition of Kahler and pseudo-Kahler struc-
ture.

On a C°manifold M, let us consider a Ctriple structure
{J,g,w} defined on V' = T,(M) for each p € M, where J
is a complex structure (a linear automorphism such that J? =
—1I), g is a pseudo-Riemannian metric (non-degenerate symmetric
bilinear form), and w is a symplectic form (a non-degenerate skew-
symmetric bilinear form), satisfying the compatibility condition

WIX,JY) = w(X,Y), w(X,Y) = g(JX,Y)
for all X,Y € V. Note that {J, g,w} also satisfy
9(JX,JY) =g(X,Y), g(X,Y) = w(X, JY).
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Since g and w are non-degenerate bilinear form, we have linear
isomorphisms ¢4, ¢, : V' — V*. We can express compatibility
condition of {.J, g,w} as the following commutative diagrams.

J‘L//qb; J;‘/L*/%

In particular, a triple {.J, g,w} is determined by two of J, g, w.

Remark. For any symplectic form w, there exists a complex
structure J such that g(X,Y) = w(X, JY) is positive definite.

We impose the integrability condition for complex structure J
and symplectic structure w.

For a C*“complex structure J on M, J defines a complex struc-
ture on M, making M a complex manifold. For instance, the
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Nijenhuis tensor
N;X,)Y)=[JX,JY] - X, Y]-JX,JY] - JJX,Y]
vanishes for all vector fields X,Y on M.

For a C"*“symplectic structure w on M, w is closed:
dw =0

A Ctriple {J,g,w} on M satisfying the compatibility con-
dition and the above integrability conditions is a pseudo-Kahler
structure; and if in addition g is positive definite, it is a Kah-
ler structure. If we impose only the first integrability condition,
then it is a pseudo-Hermitian structure; and a Hermitian structure
respectively.



Remark. For a fixed Riemannian metric (pseudo-Riemannian
metric) g, a triple {.J, g,w} is Kahler (pseudo-Kahller) if and only
if either one of the following conditions issatisfied.

where V is a Riemannian (pseudo-Riemannian) connection.

Examples. A complex projective space CP!l is a quotient
manifold of W = C? — {O} by the action of C*

Oy (21,22) = (Az1,Az) (A € C).

On the other hand, a Hopf surface S is a quotient manifold of
W by the action of Z

i o (21, 22) — (W21, p'z) (t € Z),



for some € C* (|u| > 1).
Since I' = {i* |t € Z} is a discrete subgroup of C* and C*/T’

is a complex torus T!, S is a Te! bundle over CP!.
Consider a (1, 1)-form on W,

w=—i(dz; A dzi + dza A7),

and put
1

W
21)? + |20
then (2 defines a real 2-form on S. € is not closed, but satisfies

A0 =0 AQ,

Q:




with
1
21]* + [ 22/
For (X)) = 0(JX), if we defines w = d, then

0 = (z1dz1 + 29dz9 + z1dz1 + z2d29).

—1
(|z1]? + |22/%)?

z120dz1 N\ dzo — Zoz1 dzo N d21>

(|22]*dz1 A dz1 + |21)*dzg A dzg—

which is so called Fubini-Study form. In the affine coordinates
< :

z = 2, w is expressed as
4\

—1
W = dz N\ dz
YT AR




We can express C P! and Hopf surface S as homogeneous com-
plex manifolds.
Since G = SLy(C) acts on CP! transitively, we have

CcP! =G/B,
where B is a Borel subgroup of G-

B=||""la,seC*af=1,v€C
05
Consider a subgroup B, of B
t

Then we have S = G /By, and B/B,, is a complex torus Té.
S is a hilomorphic fiber bundle over CP! with fiber T¢s.
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Homogeneous structures.

Let M be a homogeneous space of Lie group G. We can express
M as G/H, where GG is a simply connected Lie group, H a closed
subgroup of G. Let H(j be the identity component of H.

Then, M = G/H is simply connected and a principal bundle
over M = GG/ H with structure group I' = H/H (the fundamen-
tal group of M) acting on M on the right.

We also consider the case when a discrete subgroup I' of G is
acting freely and properly discontinuously on A on the left. In
this case M can be considered as ['\G/ H (double coset space),
which defines a locally homogeneous space.



Definitions.

o A homogeneous complex structure on M = G/H is defined
by an integrable complex structure J on g/b, which satisfies the

condition Jad(X) = ad(X)J for X € b.

e A homoegenous complex structure JJ on M is a homogeneous
complex structure on M which is invariant by the right action
of I'. It may be defined as an integrable complex structure on J

on g/b satisfying the condition JAd(h) = Ad(h)J for h € H.

e If a discrete subgroup I' of & is acting freely and properly discon-

tinuously on M on the left, a homogeneous complex structure
J on M defines a complex structure on M = I'\G/H), which
is called a locally homogeneous complex structure on M.
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e M is a homogeneous complex Kahler manifold, it M is a homo-
geneous complex manifold G/H which admits a Kahler struc-
ture.

e M is a homogeneous Kahler manifold, if it is a homogeneous
complex Kahler manifold G/H and the Kahler structure is in-
variant by the action of GG on the left.

e If a discrete subgroup I' of G acts freely and properly discontinu-
ously on a simply connected homogeneous Kahler manifold G/ K
on the left, it defines a locally homogeneous (or left-invariant)
Kahler structure on M = I'\NG/K, where K is a compact sub-
group of G.
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Compact homogeneous and locally homogeneous Kah-
ler manifolds.

Theorem (Matsushima, Borel-Remmert). A compact homoge-
neous complex Kahler manifold is biholomorphic to a product of a
complex torus and a flag manifold.

Remark. We have a class of compact locally homogeneous

Kahler manifolds which do not admit any homogeneous Kahler
structures: G =: C! X R?¥, where the action ¢ : R%* — Aut(C')

is defined by
S(E) (21,20, ..., 2)) = (¥~ VMtizy eV —IMblizy  oV=liitiz),

where t; = t;e; (e;: the i-th unit vector in R?¥), and e —1j s
the s;-th root of unity, 2 =1,...,2k, 5 =1,...,L.
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If an abelian lattice Z2 of C! is preserved by the action ¢ on
sz, then M = I'\G defines a solvmanifold, where [' = 7.2 s 72k
is a lattice of (5.

The Lie algebra g of (G is the following:

g=1X1, X0, ..., Xo;, Xop4 15 -+, X9k R

where the bracket multiplications are defined by
Xopr0i Xoj—1] = —Xoj, [ Xo19;, Xoj] = Xoj1
foreo=1,...,k,9=1,....,[, and all other brackets vanish.

The canonical left-invariant complex structure is defined by
JXoj_ 1= Xgj, JXoj = —X9;_1,

JXop19i—1 = Xojy9i, J Xopr9; = —Xop19i 1
foreo=1,...,k,9=1,...,1.

13



The class of complex surfaces with [ = £ = 1 in the above
example coincides with the class of hyperelliptic surfaces.

A compact solvmanifold admits a Kahler structure if and only
if it belongs to the above class of compact locally homogeneous
Kahler solvmanifolds.

It is well known that a simply connected homogeneous Kahler
manifold is biholomorphic to C* x S x D, where S is a flag
manifold, which is a projective manifold, D is a bounded homo-
geneous domain.

We conjecture that a compact locally homogeneous Kahler man-
ifold is, up to finite covering, biholomorphic to T(kj x S x I'\D,
where D is a symmetric bounded domain.
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Compact homogeneous and locally homogeneous
pseudo-Kahler manifolds.

Theorem (Dorfmeister-Guan). A compact homogeneous
pseudo-Kahler manifold is biholomorphic to a product of a complex
torus and a flag manifold.

Remark. There is an example of a compact locally homoge-
neous pseudo-Kahler manifold which do not admit any homoge-
neous pseudo-Kahler structures: G = N3 X R, where N3 is the
Heisenberg Lie group of dimension 3. The Lie algebra g is gen-
erated by X,Y, Z, W with only non-zero bracket multiplication
X,Y| = —Z. An integrable complex structure J is defined by
JX =Y, JZ=W. Q=yAz+wA x defines a pseudo-Kahler
structure on S = I['\G for a suitable lattice I' (Kodaira surface).
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Hermitian and pseudo-Hermitian manifolds.

Definition. A Hermitian manifold M is Hermitian symmetic
if each point p € M is an isolated fixed point of an involutive

holomorphic isometry s, of M.

e A Hermitian symmetic space M is a Riemannian symmetric
space {M; g} with its compatible complex structure J, defining
a Kahler structure on M. It is a simply connected homogeneous

Kahler manifold.

e A Hermitian symmetic space M is irreducibleif it is irreducible as
a Riemannian symmetric space (i.e. the holonomy representation

is irreducible).
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There are two types, non-compact type and compact type, of
irreducible Hermitian symmetric spaces.

e If M is of non-compact type, then it can be written as G/H
(effectively), where GG is a connected non-compact simple Lie
group with center {e} and H is a maximal compact subgroup
of GG which has non-discrete center Z ;.

o If M is of compact type, then it can be written as G/ H (effec-
tively), where GG is a connected compact simple Lie group with
center {e} and H is a maximal connected proper subgroup of G

which has non-discrete center Zp.
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Let g be the Lie algebra of G and § that of H. Then we have
the standard decomposition of g:

g = h + m (as a vector space),

where h = {X € glc X = X}, m ={X € gloX = —X}, and
h = [m, m| is isomorphic to the holonomy algebra ad |m, m|.

Any G-invariant complex structure on M is considered as J €
G L(m), satisfying the following conditions:

(1) J? = —1.

(2) J - admX = ad X - J for every X € b.
3)[JX,JY]-J[JX,Y]|-J X, JY]-[X,Y]|=0forall X, Y €
m.
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We know that for an irreducible Hermitian symmetric space, the
complex structure J € GL(m) is of the form J = ad nZ for some
Z € 3p. Since Z is actually a cyclic group with the Lie algebra
3p of dimension 1, we have only two G-invariant complex structure
J and —.J, which are compactible with the Riemannian metric.

(Burstall-Rawnsley).  An irreducible Hermitian
symmetric space {M, g, J} admit no compatible complex struc-
tures other than the original complex structure J and —J.

They showed that the conjecture holds for Hermitian symmetric
spaces of compact type. The proof is based on Twistor theory of
symmetic spaces they have developed. We have a counter-example
to the conjecture for Hermitian symmetric spaces of non-compact

type.
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For a non-compact simple Lie group G, we have Iwasawa de-
composition: G = SH, where S is a simply connected solvable
Lie group (called the Iwasawa group).

S acts simply-transitively on the Hermitian symmetric space
M = G/H. Hence, M can be considered as a homogeneous
Kahler solvable Lie group.

Let s be the Lie algebra of S. Then s is a non-unimodular and
split solvable Lie algebra, and has a so-called normal J-algebra
structure, which is defined as follows:

Definition. A normal J-algebra is a solvable Lie algebra with
an inner product <, > and a complex structure J € GL(s) (J* =
—1), satisfying the following conditions:
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()< JX,JY >=< X,Y > forall X,Y €s.

(i) < [ X, Y], JZ >+ < [V, Z],JX >+ < |Z,X],JY >=0
forall X,Y, Z € s.

(iii) [JX, JY| — JJX,Y] — JX,JY] — | X,Y] = 0 for all
X.,Y, Z € s.

(iv) ads X has only real eigenvalues for all X € s.

(v) there is a linear form w such that < X,Y >=w[JX,Y].

A solvable Lie algebra satisfying (i), (ii), (iii) is called a solvable
Kahler algebra. A solvable Lie algebra satisfying (iv) is of split (or
completely solvable) type.
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Theorem. (due to Gindikin-Vinberg, Pyatetskii-Shariro) A
split solvable Kahler algebra s is decomposed into the semi-direct
sum of an abelian J-invariant ideal and a normal .J-algebra.

The corresponding Lie group S is a homogeneous Kahler solv-
manifold which is biholomorphic to a direct product of C* and a
bounded homogeneous domain D.

Definition. J-algebras {s:.J} and {s":.J'} are isomorphic if
there exists a Lie algebra isomorphism ¢ : s — s’ such that ¢.J =

76,

It is known (due to Pyatetskii-Shapiro) that there exists one to
one correspondence between isomorphism classes of normal J-
algebras and biholomorphic equivalence classes of bounded ho-
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mogeneous domains.

It is known (due to Dotti-Miatello) that irreducible normal J-
algebras {s; J} and {s"; J'} are isomorphic up to sign if and only
if solvable Lie algebras s and s’ are isomorphic as Lie algebras.

Observation. There exists one to one correspondence between
complex structures J on a solvable Lie algebra g and complex Lie
subalgebras §h which satisfy go = b @ h, given by J — § 5 and
h — Jy, where h = {X + /—JX|X € g}.

For a complex structure J, the complex Lie subgroup H j of G
corresponding to b ; is closed, simply connected, and G/ H s is
biholomorphic to C"*.

The canonical inclusion g < gc induces an inclusion G — G,
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and I' = G N Hj is a discrete subgroup of G. We have the
following canonical map g =7 o m:

G5 G/T <% Go/Hy,
where 7 is a covering map, and 7 is an inclusion. The left-invariant

complex structure J on G is the one induced by g from an open
set U =Imqg C C™.
Example. Let s,,11 be a solvable Lie algebra of dimension

2m + 2 with a basis 8 = {X;,Y;, Z, W} for which the bracket

multiplications are defined by
1 1
[X’MYVZ] = —Z, [Wa X]] — 2X]7 [Wa Yk] — 2Yk’7 [Wv Z] = Z,
where 7,7,k = 1,..., m, and all other brackets are 0.

We can express s,,11 as the semi-direct sum of a nilpotent
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ideal ny, generated by X;,Y;,Z,1,7 = 1,...,m and an abelian
Lie algebra to generated by {WW}.

The inner product <, > is defined with respect to which 3 is an
orthonormal basis.

The complex structure J is defined by
JW =2,]72=-W,JX; =Y, JY; = —-Xj,
where 7,7 =1, ....m.

It is easy to check that J is integrable, and a linear form w

defined by
w(Z) = 1,0(X;) = w(¥]) = w() =0,

satisfies < A, B >= w(|JA, B]) for any A, B € s,,11; and thus
{sy1;J} is a (irreducible) normal J-algebra.
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We now take another complex structure J;. on s,,,1.1. The com-
plex structure Ji., k = 1,2, ..., m is defined by

IW =207 =-W,L.X; =Y, ,Y:=—X;,i=12 ..k

and

Jka — —Y]’,Jij =X;,7=k+1,2,...,m,

then J;. is compatible with the inner product and integrable, but
the condition (ii) of normal J-algebra does not hold (Kahler form
is not closed).

We see that the complex subalgebra § and ;. of s correspond-
ing to J and J}. is given by,

h={W+v—-1Z, X1+v—1Y1, Xo+vV—=1Ys, ... X;n+vV 1Y } o,
b = {W+vV—-1Z, ., Xp vV =1V}, Xp 1=V =1V} 1, . Xn—V—1¥Yn }c



where [W + /=17, X; + /—1Yj] = 3(X; £ V=1V;), i =

L,2,...,m.
The corresponding Lie group Sj,,11 is expressed as

where H,, is the Heisenberg group and the action ¢ : R —
Aut (H}.) is defined by

1

1 x z 1 e2°x €%z
d(s): |0, y' | — |0 I, e%Syt
0 0 1 0 0 1

The complex subgroup ;. of Sc corresponding to h;. is ex-
pressed as a semi-direct product 5. = %} X V', where
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0 0 1
1 0 v—1(e®—1)
,1/ :< O Im O ,S),
0 0 1

I 0
u); = ugul (¢, = mo—k L ). Note

that %;. is an abelian subgroup of Sc and ¥ is a 1-parameter
subgroup of Sc corresponding to W + /—1V.

Define ¢y, : Sc — C™ 1 by

ucC”"seC,
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0L, vl |,s) = (u++vV—1lev, (< u, v > —22)+
k

V—T(;(HHH% + [[v7) +2¢%).

Then, ¢;. induces a biholomorphic map ¢;. : Sc/ . — C™H,
and the image of S, 11 is the open subset of cm+i.

_ 1
S = Op(Smi1) = {(z,0) € €™ [Imw > [},

We know that . is biholomorphic to D,,, 11 = {(z, w)| ||z||* +
lw|? < 1}, which is a complex hyperbolic (m + 1)-space (or a
Siegel domain of type I1). And we can see that .%,, is biholomorphic
to D! = {(z,w) € C"" |Imw < %HZHQ} which can be
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considered as CP™+1 — Dy U P2, where &2 is a projective
m-plane tangent to the boundary of D, 1.

Remark. The homogeneous complex solvmanifold & =
{Spm+1;Ji.} is non-Kahler in any S, {-invariant metric: Sup-
pose it admits a S, 1-invariant Kahler metric. Then {s,,+1; Ji.}
defines an irreducible split solvable Kahler algebra. Since s,,,11 has
no Ji-invariant abelian ideal, it is an irreducible normal J-algebra.
But then, according to the above result of Dotti-Miatello, we

must have J. = J,or — J. |n particular, /. is not biholomorphic
to S = {Sm+1; T/}
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Strongly KT structure.

Definition. A strongly Kahler with torsion structure (or shortly
SK'T structure on a differentiable manifold M is a Hermitian struc-
ture {h, J} on M with its associated fundamental form ¢ satisfy-
ing 00) = 0 or equivalently d d°Q2 = 0, where d° = /—1(0 — 0).
In terms of the Bismut connection (the unique metric connection Vv
with respect to which J is parallel, v.J = 0 and its torsion 3-form
c(X,Y,Z) = g(X,TV(Y,Z)) is skew-symmetric), the condition
00€) = 0 is equivalent to dc = 0 where ¢ is actually given by
c = —Jdf).

It is known (due to Gauduchon) that any compact Hermitian
manifold of dimension 4 admits a SKT structure in the conformal
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class of the given Hermitian metric.

For a compact (non-Kahler) Hermitian manifold of dimension
greater than 6, SKT structure and LCK structure (which will
be defined next) are mutually exclusive (due to Alexandrov and
lvanov).

For a bi-Hermitian manifold { M, h, J4 } with its associated fun-
damental forms 24, Q)_ satisfying that d5 €}y = —d“Q_ =0
is d-closed, both {h, J+} and {h, J_} define STK structures on
M.

Any compact Lie group of even dimension admits a homoge-
neous SKT structure (due to Spindel et al).
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Locally conformally Kahler structure.

Definition. A /ocally conformally Kahler structure (or shortly
L CK structure) on a differentiable manifold M is a Hermitian
structure (h,.JJ) on M with its associated fundamental form 2
satisfying d ) = 6 A 2 for some closed 1-form 6 (which is called

Lee form).

A LCK structure () is locally conformally Kahler, in the sense
that there is a open covering {U;} of M such that 2; = e 7 ()
is Kahler form on U; for some functions o;, that is, d{); = 0.
The condition d{) = 6 A () is equivalent to the existence of a
global close 1-form 6 such that 0|U; = do;.
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A LCK structure € is globally conformally Kahler (or Kahler) if
and only if 6 is exact (or O respectively).

Definition. A homogeneous locally conformally Kahler (or ho-
mogeneous |.c.K') manifold M is a homogeneous Hermitian mani-
fold with its homogeneous Hermitian structure h, defining a locally
conformally Kahler structure 2 on M.

Definition. If a simply connected homogeneous LCK manifold
M = G/H, where GG is a connected Lie group and H a closed
subgroup of (&, admits a free action of a discrete subgroup I' of
G on the left, then we call a double coset space I'\G/H a locally
homogeneous LCK manifold.
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Observation. Classification of non-Kahler complex surfaces
with by = 0 is known: Kodaira surfaces, Inoue surfaces, properly
elliptic surfaces of odd type or Hopf surfaces. Except for the class
), all of these
non-Kahler complex surfaces, up to small deformations, admit ei-

of Hopf surfaces with eigenvalues A1, Ao (JA1] # | Ao

ther homogeneous or locally homogeneous LCK structures.

In fact, we can express each of these LCK complex surfaces S
as '\G (up to finite covering), where GG is a 4-dimensional Lie
group with lattice I' which admits homogeneous |.c.K structures.

It is known (due to Brunella) that Kato surfaces, which are non-
Kahler complex surfaces with by > 0, also admit LCK structures.
There is a conjecture that Kato surfaces exhaust all non-Kahler
complex surfaces with by > 0.
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The following is a list of all 4-dimensional unimodular Lie alge-
bras g with LCK structure, defining LCK complex surfaces, where
the Lie algebra g is generated by X, Y, Z, W with only non-zero
bracket multiplication specified.

(1) Primary Kodaira surface:

Y]=-2

(2) Secondary Kodaira surface:

)
|
)
[ ]: — 4, [WvX]— —Y, [W,Y]:X
)
Y,
)
|

Inoue su rface ST

Z)=—X,[W,Y]|=Y,[W,Z] = —Z

(3

(4) Inoue surface S
X]=-IX -0y, W,Y]=bX -}V, [W,Z] = Z
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(5) Properly elliptic surface:
Y|=—Z [Z.X|=Y,[Z,Y] =X

)
X,
(6) Hopf surface'
X Y]=—Z |2 X]=-Y [2Y]=X
For all cases, we have a complex structure defined by
JX ==Y JY=X,JZ=-W JW =72,

and its compatible LCK form €2 = x Ay + 2 A w with the Lee
form 6 = w, where x, vy, z, w are the Maurer-Cartan forms corre-
sponding to X, Y, Z, W respectively.
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For Inoue surfaces of type ST, we have other complex structures
on g:

JIX=Y.JY =X, JZ =W —qY,JW = -7 — ¢X,

with no-zero real number ¢, defining a complex structure on
S for which there exist no compatible LCK structures (due to
Belgun).

For Hopf surfaces, we have other complex structures on g
JX=Y,JY =-X,JZ=W+dZ, JW +dZ)=—Z,

with no-zero real number d, defining a homogeneous LCK struc-
ture on Hopf surface, as we will discuss in detail later.
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Generalization of some of the above LCK complex
surfaces to the higher dimension.

(i) Let hoy, 11 be the Heisenberg Lie algebra of dimension 2n + 1,
which is a nilpotent Lie algebra generated by X7, Xo, ..., X},
Y1,Yo, ..., Y, Z with non-zero bracket multiplication:

XY =—Z1=1,2,....n.
A nilpotent Lie algebra g = R! x Hon+1 admits a LCK structure
€):

n
Q:z/\er,Zl:cz-/\yi
1=

with the Lee form 6 = w, where x;,y;, z,w are the Maure-
Cartan forms corresponding to X, Y, Z, W respectively; and a
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complex struture J:
JL =W JW =—-2,JX;=Y;,JY,=—X;,1=1,2,...,n.

The corresponding Lie group GG admits a lattice I', defining a lo-
cally homogeneous LCK structure on its compact quotient space
['\G. This is a generalization of primary Kodaira surface.

(i) Let g be a solvable Lie algebra of dimension 2n + 2, generated
by X, Y, 21, 2o, ..., Zn, W1, Wo, ..., W, with non-zero bracket
multiplication:

Wi, X] = —2X — bY, [W,, Y] = biX — 2V, [Wy, 2] = -7,
(% 9 (A (% [/ 9 ) 1) ] n ]
where:=1,2,...n,7=1,2,...,n.
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The solvable Lie algebra g admits a LCK structure {):
n
O=xANy+n ¥ z ANwj,
1,7=1
with the Lee form 6 = ,,112?’:1 w;, where x,y, z;,w; are the
Maure-Cartan forms corresponding to X, Y, Z;, W respectively;
and a complex structure J:

IX=Y,JW=—-2,JZ;=W;,JW; = —Z:.i=1,2,...n.

The corresponding Lie group GG admits a lattice I" (due to
Oeljeklaus-Toma), defining a locally homogeneous LCK structure
on its compact quotient space M = I'\G. This is a generaliza-

tion of Inoue surface SU. We have b1 (M) = dim H'(g) =
dim g/[g, g] = n.
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Definition. A LCK manifold M is of Vaisman type if its Lee
form 6 is parallel w.r.t. the Levi-Civita connection of h; or equiv-
alently, the Lee field ¢ = h™16 is parallel.

Definition. We define an exterior differential dgy on the de
Rham compex A*(M) of a LCK manifold M as
dyg :w— —0 ANw + dw,
which satisfies d3 = 0 for w € A*(M). We call Hj(M) the k-th
twisted cohomology group with respect to 6.
o For a LCK manifold M of Vaisman type, all Hf (M) vanish (due
to de Ledn-Lopez-Marrero-Pardén)

e For a reductive or nilpotent Lie algebra g, all Hé“(g) vanish.
(due to Hochschild-Serre, Diximier respectively)
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For locally homogeneous LCK manifold I'\G, we can check
whether the Lee filed £ is parallel or not, by using the formula:

WV x&Y) = h(X,£LY) = A& Y], X) + (Y, X], &)

for any X, Y € g. Since dO(Y, X) = h(|Y, X|,£) = 0, the Lee
filed & is parallel if and only if it is Killing.

For locally homogeneous LCK manifold I'\G, where G is simply
connected solvable Lie group, there is a canonical injection

k k
Hy(g) — Hy(I\G).
(cf. Raghunathan; Discrete subgroups of Lie groups)

e In the above examples, (i) is of Vaisman type, and (ii) is not.

43



Examples.

e For secondary Kodaira surface, the Lee filed £ = W, and the
bracket multiplication is given by |X,Y] = —Z, [W, X] =
—Y, W, Y] = X. We get by simple calculation,

hvgW, V) =h(W,ULY) + h(U,[W,V]) =0
for any U,V € g. It is also easy to check {2 = —w A 2 + dz.

e For Inoue surface Si, the Lee filed £ = W, and the bracket
multiplication is given by |V, Z] = =X, W Y| =Y, [W, Z] =
— 7. The Lee field £ = W is not Killing:

WV W, Z) = h([W, Z), Z) + h(Z, W, Z)) = ~2h(Z, Z) £ 0.

It is also easy to check that there is no invariant 1-form v such
that {2 = —w A v + dv; and thus no such 1-form v on S=.
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Definitions.

o A contact metric structure {¢,n, J, g} on M***1is a contact
structure ¢, ¢ A (dp)" # 0 with the Reeb field n,i(n)¢ =
1,i(n)d¢ = 0, a (1,1)-tensor J, J?> = —I + ¢ ® n and a Rie-
mannian metric g, g(X,Y) = ¢(X)op(Y) + d (X, JY).

o A Sasaki structure on M?*"1 is a contact metric structure
{p,m,, g} satistying Zpg = 0 (Killing field) and the integra-
bility of J = J|2 on 9 = ker ¢ (CR-structure).

e For any Sasaki manifold N, its Kahler cone C(N) is defined as
C(N) = Ry x N with the Kahler form w = rdr A ¢ + T;dgb,
where a compatible complex structure J is defined by Jn = }ﬂr

and J|2 = J.
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For any Sasaki manifold N with contact form ¢, we
can define a LCK form ) = ;2200 = %dr A ¢ + do; or taking
t = —2logr, Q= —dtANop+dpon M =R X N or Sl % N,

which is of Vaisman type. We can define a family of complex
structures J compatible with ) by

JO=b0+(1+b)n,Jn=—0;—bn,

where b € R and the Lee field is J1. Conversely, any simply
connected complete Vaisman manifold is of the form R x /N with
LCK structure as above, where NV is a simply connected complete
Sasaki manifold.

Remark. It is known (due to Ornea and Verbitsky) that a
compact Vaisman manifold is a fiber bundle over St with fiber a
compact Sasaki manifold.
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Homogeneous and locally homogeneous LCK
structures on Hopf surfaces.

Let g = u(2) = R +su(2) be a reductive Lie algebra with basis
{T,X,Y,Z} of g, where T is a generator of the center R of g,
and

X—l v —1 0 Y—l 0 v—1 Z—l 0 —1
200 —/=1]""  2|v=1 0 ) 10
satisfying the bracket multiplications
XY =2 Y. Z| =X, |[Z,X]| =Y.
Then g admits a family of complex structures Js, 0 =c++/—1d
(¢ # 0) defined by
J(g(T—dX) = CX, J5<CX) = —(T—dX), J5Y = :|:Z, J5Z = FY.
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Homogeneous Hopf surfaces. Let G = S! x SU(2) (which
is diffeomorphic to ST x S3). Then all homogeneous complex
structures on G admit their compatible homogeneous LCK struc-
tures, defining a primary Hopf surfaces S which are compact

quotient spaces of the form TW/T'y, where W = C?\{0} and T
is a cyclic group of holomorphic automorphisms on 1 generated

by a contraction f : (21, 29) — (Az1, A2z2) with |A| # 0, 1.
Proof. We consider a canonical diffeomorphism ®:
CI)(;:RXSU(Q)—)W

defined by
(t, 21, 22) — (A§21, A522),

where A5 = e“tV—1d and SU(2) is identified with
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S3 = {(21,20) € C?| |21]* + |#2|? = 1} by the correspondence:

‘1 T2 < (21,22).

22 <1

Then we see that Oy is a biholomorphic map. It is now clear
that @5 induces a biholomorphism between G = St x SU(2) with
homogeneous complex structure Js and a primary Hopf surface

Sy, = W/Ty.. Q.E.D.

Remark. We have the Lee field £ =T — gX, which is irregular

for an irrational g and the Reeb field n = cX, which is always

regular.

U(2) is a quotient Lie group of GG by the central subgroup
7y = {<17 [)7 <_17 _[>}
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We can also consider = S1 x S3 as a compact homogeneous
space G/H, where G = S x U(2) with its Lie algebra § =
R + u(2) and H = U(1) with its Lie algebra h. Then, we have a

decomposition g = m + § for the subspace m of g generated by
S,T.Y, 7 and b generated by 1V, where

1 (V=T 0 {0 0
3_2(()\ﬁIyLV_Q%VCT}

Locally homogeneous Hopf surfaces. Let G = R x U(2),
and let [, ; (p, ¢ # 0) be a discrete subgroup of G defined by

eV —1pk 0

Ipq = {(, 0 oV =1Lk

JeR X UQ2)| k € Z).
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Then ijq\é/H is biholomorphic to a Hopf surface S, =
W/T'x, . where I'y. . is the cyclic group of automorphisms on
W generated by

gb : (21, ZQ) — ()\121, )\222)
with \{ = eTJF\/?lp, Ao = 67““/?1‘1, r = 0.
In fact, if we take a homogeneous complex structure J; on é/H
induced from the diffeomorphism

o G/H—- W

defined by

ri t

22),
®,- induces a biholomorphism between prq\é/H and Sp q.

(t,21,22) — (€21, €
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Homogeneous Hopf manifolds.

Let M = G/H, where G = S x SU(n) and H = SU(n— 1),
which is diffeomorphic to St x S?"*1 Then M admits a homo-
geneous LCK structure. The Lie algebra g = R + su(n) has a

decomposition:
g=m-+Db,

satisfying |h, m| C m, where h = su(n — 1), and m is generated
by T, X,Y;, Z; (i,j = 1,2,...,n — 1) with a generator T' of the
center R, and non-zero bracket multiplications:

Y, Z;]=—Xmod b (i =1,2,....n—1).
We have a LCK form {2 and the Lee form 6:
Q=tANx+ _glyi/\zi, 0=t.
Z:
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As in the case n = 1, g admits a family of complex structures

5.8 = ¢ + /=1 d defined by
Js(T—dX) = cX, J5(cX) = =(T=dX), JsY; = Z;, JsZ; = =Y

where ¢ # 0, ©+ = 1,2,...,n — 1, defining a homogeneous LCK
structure of Vaisman type on M.

S2ntl — SU(n)/SU(n — 1) admits a homogeneous
Sasaki structure: we have a Hopf fibration S?"T1 — CP" with
fiber ST = U(n — 1)/SU(n — 1) and the base space CP" =
SU(n)/U(n—1). It has a homogeneous contact form x, defining
a Kahler structure w = dx on CP" defined by

W = Yi N\ 2 .

1

| M

[/
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Structure of compact homogeneous LCK manifolds

Theorem. A compact homogeneous LCK manifold M is bi-
holomorphic to a holomorphic principal fiber bundle over a flag
manifold with fiber a 1-dimensional complex torus Tclj. And its
LCK structure is of Vaisman type.

To be more precise, we can express M as a homogeneous space
form G/H, where G is a compact connected Lie group of holo-
morphic isometries on M which is of the form

G=S'xS5,
where S is a compact semi-simple Lie group, including a closed

subgroup H of G.

S/H is a compact homogeneous Sasaki manifold, which is a
principal fiber bundle over a flag manifold S/Q with fiber St =



()/H for some parabolic subgroup () of S including H.
Sketch of Proof. Since GG is a compact Lie group, it is reductive;
and its Lie algebra g is of the form:
g=t+s,

where t is the center of g and s a semi-simple Lie algebra with
g, 9] =s. Since the Lee form 6 is closed but not 0, we must have
0 € t*. Let £ be the Lee field with (&) = 1, and n = J¢ (the
Reeb field) for the complex structure J with its Maerer-Cartan
form ¢. Then we can express g as

g=<&>+g, g =<n >+

where < £ > is the 1-dimensional subspace of g generated by &,
t = ker gb|g/ with £ D b, and both of these sums are orthogonal
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direct sums with respect to the Hermtian metric h.

We can see
o 1 < dimt < 2, and &,n are infinitesimal automorphisms of J
and infinitesimal isometries (Killing fields) with respect to h.
e The case dimt = 2 can be reduced to the case dimt = 1.

Let g =< 1 > +b, then q is a Lie subalgebra of g’; in fact we
have q = {X € ¢’ | dp(X,g’) = 0}. Then, b is an ideal of g.

Let .S and () be the corresponding Lie subgroup of (&, then () is a
closed subgroup of S since we have Q = {z € S|ad(x)"¢ = ¢}
in particular, H is a normal subgroup of () with QQ/H = St and

1 generates an S1 action on S.

Since d¢ defines a homogeneous symplectic structure on
tmodh, S/ admits a homogeneous symplectic structure com-
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patible with .J, defining a Kahler structure on .S/ (due to Borel).

We can see that the Lie subalgebra < & > + < > of g
corresponds to a 2-dimensional torus T2 of G; ¢ — /—1n defines
a 1-dimensional complex torus action on M = G/ H on the right
which is holomorphic and isometric. We have M = Sl % S/H,
where S/H — S/Q is a principal S'-bundle over the flag manifold
S/Q; and M — S/Q) is a holomorphic principal fiber bundle over
the flag manifold S/Q with fiber T Q.E.D.

Corollary There exist no compact complex homogeneous LCK
manifolds; in particular, no compact complex paralellizable mani-
folds admit their compatible LCK structures.

Proof. Only compact complex Lie groups are complex tori,
which can not act transitively on a compact LCK manifold. Q.E.D.
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Example. There exists a LCK structure on g = R ®sl(2, R),

which is not of Vaisman type. Take a basis {W, X, Y, Z} for g
with bracket multiplication defined by

X.Y]=-2,[2,X|=Y,[2,Y] = —X,

and all other brackets vanish. We have a homogeneous complex
structure defined by

JY =X, JX ==Y JW=Z J7=-W,
and its compatible LCK form €2 on g defined by
D=zAw+zx Ay,

with the Lee form 6 = w, where x, vy, z, w are the Maurer-Cartan
forms corresponding to X, Y, Z, W respectively. We can take an-
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other LCK form

Qyp =1 ANw+dy,
where ¢ = by + cz(b,c € R) with 0 < b < c and ¢* — b* = ¢,
making the corresponding metric h,, positive definite. The Lee
field £ is given as

£ = o bQ(cWerX).
It is easy to check that h(|£, X|,Y) + h(X,[£,Y]) # 0; and

thus & is not a Killing field.

For any lattice I' of G = R x SL(2,R) with the above ho-
mogeneous |.c.K. structure, we get a complex surface F\G (prop—
erly elliptic surface) with locally homogeneous non-Vaisman |.c.K.
structure.
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Generalized Hopf manifolds and their Deformation.

A generalized Hopf manifold is, a compact complex manifold of
which the universal covering is W = C" — {0}. We call it here
simply a Hopf manifold.

Let M = W/G be a Hopf manifold, where GG is the covering
transformation group of M consisting of analytic automorhisms
over C" which fixes the origin 0. GG acts on W properly discon-
tinuously and fixed point free. We can express GG as

G=HXUZ,

where Z is an infinite cyclic group generated by a contraction p on
W, and H is a finite normal subgroup of G. There exists m € N
such that for Z/ =< p' >, o' = p", G’ = H x Z" is a normal
subgroup of finite index in G. We write G, Z in place of G', Z’.
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We can see that W/G is diffeomorphic to St x S?*~1/H
where H is a finite unitary group acting freely on S2"~1. In fact,
we can construct a complex analytic family {M(t),t € C} which
deforms W /G to W/I(G), where [(G) is the linear transformation
group on W consisting of linear terms of g € G.

Let 7%, (t # 0) be an analytic automorphism over W defined by

TH(21, 29, ooy 2n) = (t21,t29, ..., t2p),
and set g; = T; 'gT}, G(t) = {g: | g € G’} and G(0) = I(G).
We can see by Cartan’s uniqueness theorem that the canoni-

cal map G — G(0) is a group isomorphism, and G(0) acts on

W properly discontinously and fixed-point free. It follows that
{M(t) = W/G(t),t € C} defines a complex analytic family.
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We can further deform a Hopf manifold M = W/G to W/l (G)
with lo(G) = lp(Z) x lg(H ), where [g(Z) is generated by a diag-
onal matrices d(aj, a9, ..., ap) with eigenvalues of o, a9, ..., ay,
of the linear term of the generator p of Z and lo(H) C U(n).

In fact, we can assume that p is of Jordan form J(«,n). Let
T+, (t # 0) be an analytic automorphism over W defined by

Ti(21, 22, s 2n) = (L2 8 %29, 0., 20),
and set g; = T; 'gT;, G(t) = {g: | g € G}, which defines a
complex analytic family with G(0) = lp(G).
As a consequence, a Hopf manifold M = W/G has a
primary Hopf manifold M = W/Z as a finite normal cov-

ering, which can be deformed to a diagonal Hopf manifold

My =W/d(ay,ao, ..., an). (cf. K.H., lllinois J. Math. 1993)
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Kahler potential and LCK structures

Observation. A LCK structure on M may be defined as a
Kahler structure & on the universal covering M on which the the
fundamental group I" acts homothetically; that is, for every v € T,
v*@ = p(v)@ holds for some positive constant p(7).

Let M = G/H be a homogeneous LCK manifold. Then its
universal covering M = G/HO is also a homogeneous LCK man-
ifold. Since the Lee form 6 is exact, () is globally conformal to a
Kahler structure . The Lie group G acts homothetically on M
on the left, and the fundamental group I' = I:]/]:[o acts on M
homothetically on the right. Conversely, a Kahler structure @ on
M with homothetic action of G on the left and " from the right
on M defines a LCK structure on M.
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Definition. Let M be a LCK manifold. Suppose that the
universal covering M admits a Kahler potential ¢, which is a real
positive function on M such that @ = —v/—199¢ defines a Kahler
structure on M. If the fundamental group I' acts homothetically
on ¢, then we call ¢ a LCK potential for M. @ clearly defines a
LCK structure on M.

Example. A diagonal Hopf surfaces Sy = W/T"y, where I is
generated by a contraction f : (21, 22) — (Az1, Az2) with |\| #
0,1 on W, admits a LCK potential

b(z1,22) = |z1|* + |22f”
We have a Kahler structure 0 = —/—1(dz1 Adz{+d 2 Nd2)
on W for which & = —/—190¢ holds.
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Generalized Hopf manifold and their LCK structures

We know (due to Ornea-Verbitsky) that a small deformation of
a compact LCK manifold with potential is also a LCK manifold
with potential. In other words, LCK structure with potential is
preserved under small deformations.

We have seen that any primary Hopf manifold can be deformed
to a diagonal Hopf manifold, which admits a LCK potential. Hence
we see that any Hopf manifold admits a LCK structure.
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