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Introduction.

We first recall the definition of Kähler and pseudo-Kähler struc-
ture.

On a C∞manifold M , let us consider a C∞triple structure
{J, g, ω} defined on V = Tp(M) for each p ∈ M , where J

is a complex structure (a linear automorphism such that J2 =
−I), g is a pseudo-Riemannian metric (non-degenerate symmetric
bilinear form), and ω is a symplectic form (a non-degenerate skew-
symmetric bilinear form), satisfying the compatibility condition

ω(JX, JY ) = ω(X,Y ), ω(X,Y ) = g(JX, Y )
for all X,Y ∈ V . Note that {J, g, ω} also satisfy

g(JX, JY ) = g(X, Y ), g(X,Y ) = ω(X, JY ).
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Since g and ω are non-degenerate bilinear form, we have linear
isomorphisms ϕg, ϕω : V → V ∗. We can express compatibility
condition of {J, g, ω} as the following commutative diagrams.

V

V ∗

ϕg

::ttttttttttttttt

V V ∗
ϕω //

J
��

V ∗

V

zz ϕg

ttttttttttttttt

V ∗ Voo
ϕω

J∗
��

In particular, a triple {J, g, ω} is determined by two of J, g, ω.
Remark. For any symplectic form ω, there exists a complex

structure J such that g(X,Y ) = ω(X, JY ) is positive definite.
We impose the integrability condition for complex structure J

and symplectic structure ω.
• For a C∞complex structure J on M , J defines a complex struc-
ture on M , making M a complex manifold. For instance, the
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Nijenhuis tensor

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ]
vanishes for all vector fields X, Y on M .
• For a C∞symplectic structure ω on M , ω is closed:

dω = 0
A C∞triple {J, g, ω} on M satisfying the compatibility con-

dition and the above integrability conditions is a pseudo-Kähler
structure; and if in addition g is positive definite, it is a Käh-
ler structure. If we impose only the first integrability condition,
then it is a pseudo-Hermitian structure; and a Hermitian structure
respectively.
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Remark. For a fixed Riemannian metric (pseudo-Riemannian
metric) g, a triple {J, g, ω} is Kähler (pseudo-Kähller) if and only
if either one of the following conditions issatisfied.

(1) ∇gJ = 0, (2) ∇g ω = 0,
where ∇g is a Riemannian (pseudo-Riemannian) connection.

Examples. A complex projective space CP 1 is a quotient
manifold of W = C2 − {O} by the action of C∗,

ϕλ : (z1, z2)→ (λz1, λz2) (λ ∈ C∗).
On the other hand, a Hopf surface S is a quotient manifold of

W by the action of Z

ψt : (z1, z2)→ (µtz1, µ
tz2) (t ∈ Z),
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for some µ ∈ C∗ (|µ| > 1).
Since Γ = {µt | t ∈ Z} is a discrete subgroup of C∗ and C∗/Γ

is a complex torus TC
1, S is a TC

1 bundle over CP 1.
Consider a (1, 1)-form on W ,

ω = −i (dz1 ∧ dz1 + dz2 ∧ z2),
and put

Ω = 1
|z1|2 + |z2|2

ω,

then Ω defines a real 2-form on S. Ω is not closed, but satisfies

dΩ = θ ∧ Ω,
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with

θ = − 1
|z1|2 + |z2|2

(z1dz1 + z2dz2 + z1dz1 + z2dz2).

For ψ(X) = θ(JX), if we defines ω = dψ, then

ω = −i
(|z1|2 + |z2|2)2

(|z2|2dz1 ∧ dz1 + |z1|2dz2 ∧ dz2−

z1z2 dz1 ∧ dz2 − z2z1 dz2 ∧ dz1)
which is so called Fubini-Study form. In the affine coordinates
z = z2

z1
, ω is expressed as

ω = −i
(1 + |z|2)2

dz ∧ dz

7



We can express CP 1 and Hopf surface S as homogeneous com-
plex manifolds.

Since G = SL2(C) acts on CP 1 transitively, we have

CP 1 = G/B,

where B is a Borel subgroup of G:

B =



α γ

0 β

 |α, β ∈ C∗, αβ = 1, γ ∈ C


Consider a subgroup Bµ of B

Bµ =



µt γ

0 µ−t

 |µ, γ ∈ C, |µ| > 1, t ∈ Z
 .

Then we have S = G/Bµ, and B/Bµ is a complex torus T 1
C.

S is a hilomorphic fiber bundle over CP 1 with fiber T 1
C.
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Homogeneous structures.

Let M be a homogeneous space of Lie group G. We can express
M as G/H, where G is a simply connected Lie group, H a closed
subgroup of G. Let H0 be the identity component of H.

Then, M̃ = G/H0 is simply connected and a principal bundle
over M = G/H with structure group Γ = H/H0 (the fundamen-
tal group of M) acting on M̃ on the right.

We also consider the case when a discrete subgroup Γ of G is
acting freely and properly discontinuously on M̃ on the left. In
this case M can be considered as Γ\G/H0 (double coset space),
which defines a locally homogeneous space.
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Definitions.
•A homogeneous complex structure on M̃ = G/H0 is defined
by an integrable complex structure J on g/h, which satisfies the
condition Jad(X) = ad(X)J for X ∈ h.

•A homoegenous complex structure J on M is a homogeneous
complex structure on M̃ which is invariant by the right action
of Γ. It may be defined as an integrable complex structure on J
on g/h satisfying the condition JAd(h) = Ad(h)J for h ∈ H.

• If a discrete subgroup Γ ofG is acting freely and properly discon-
tinuously on M̃ on the left, a homogeneous complex structure
J on M̃ defines a complex structure on M = Γ\G/H0, which
is called a locally homogeneous complex structure on M .
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•M is a homogeneous complex Kähler manifold, if M is a homo-
geneous complex manifold G/H which admits a Kähler struc-
ture.

•M is a homogeneous Kähler manifold, if it is a homogeneous
complex Kähler manifold G/H and the Kähler structure is in-
variant by the action of G on the left.

• If a discrete subgroup Γ of G acts freely and properly discontinu-
ously on a simply connected homogeneous Kähler manifold G/K
on the left, it defines a locally homogeneous (or left-invariant)
Kähler structure on M = Γ\G/K, where K is a compact sub-
group of G.
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Compact homogeneous and locally homogeneous Käh-
ler manifolds.

Theorem (Matsushima, Borel-Remmert). A compact homoge-
neous complex Kähler manifold is biholomorphic to a product of a
complex torus and a flag manifold.

Remark. We have a class of compact locally homogeneous
Kähler manifolds which do not admit any homogeneous Kähler
structures: G =: Cl⋊R2k, where the action ϕ : R2k → Aut(Cl)
is defined by

ϕ(t̄i)((z1, z2, . . . , zl)) = (e
√
−1 ηi1 tiz1, e

√
−1 ηi2 tiz2, ..., e

√
−1 ηil tizl),

where t̄i = tiei (ei: the i-th unit vector in R2k), and e
√
−1 ηij is

the si-th root of unity, i = 1, . . . , 2k, j = 1, . . . , l.
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If an abelian lattice Z2l of Cl is preserved by the action ϕ on
Z2k, then M = Γ\G defines a solvmanifold, where Γ = Z2l⋊Z2k

is a lattice of G.
The Lie algebra g of G is the following:

g = {X1, X2, . . . , X2l, X2l+1, . . . , X2l+2k}R,
where the bracket multiplications are defined by

[X2l+2i, X2j−1] = −X2j, [X2l+2i, X2j] = X2j−1
for i = 1, . . . , k, j = 1, . . . , l, and all other brackets vanish.

The canonical left-invariant complex structure is defined by
JX2j−1 = X2j, JX2j = −X2j−1,

JX2l+2i−1 = X2l+2i, JX2l+2i = −X2l+2i−1
for i = 1, . . . , k, j = 1, . . . , l.
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Notes.
•The class of complex surfaces with l = k = 1 in the above
example coincides with the class of hyperelliptic surfaces.
•A compact solvmanifold admits a Kähler structure if and only
if it belongs to the above class of compact locally homogeneous
Kähler solvmanifolds.
• It is well known that a simply connected homogeneous Kähler
manifold is biholomorphic to Ck × S × D, where S is a flag
manifold, which is a projective manifold, D is a bounded homo-
geneous domain.
•We conjecture that a compact locally homogeneous Kähler man-
ifold is, up to finite covering, biholomorphic to T kC× S × Γ\D,
where D is a symmetric bounded domain.
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Compact homogeneous and locally homogeneous
pseudo-Kähler manifolds.

Theorem (Dorfmeister-Guan). A compact homogeneous
pseudo-Kähler manifold is biholomorphic to a product of a complex
torus and a flag manifold.

Remark. There is an example of a compact locally homoge-
neous pseudo-Kähler manifold which do not admit any homoge-
neous pseudo-Kähler structures: G = N3 × R, where N3 is the
Heisenberg Lie group of dimension 3. The Lie algebra g is gen-
erated by X,Y, Z,W with only non-zero bracket multiplication
[X, Y ] = −Z. An integrable complex structure J is defined by
JX = Y, JZ = W . Ω = y ∧ z + w ∧ x defines a pseudo-Kähler
structure on S = Γ\G for a suitable lattice Γ (Kodaira surface).
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Hermitian and pseudo-Hermitian manifolds.

Definition. A Hermitian manifold M is Hermitian symmetic
if each point p ∈ M is an isolated fixed point of an involutive
holomorphic isometry sp of M .
•A Hermitian symmetic space M is a Riemannian symmetric
space {M ; g} with its compatible complex structure J , defining
a Kähler structure on M . It is a simply connected homogeneous
Kähler manifold.
•A Hermitian symmetic spaceM is irreducible if it is irreducible as
a Riemannian symmetric space (i.e. the holonomy representation
is irreducible).
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There are two types, non-compact type and compact type, of
irreducible Hermitian symmetric spaces.
• If M is of non-compact type, then it can be written as G/H
(effectively), where G is a connected non-compact simple Lie
group with center {e} and H is a maximal compact subgroup
of G which has non-discrete center ZH .
• If M is of compact type, then it can be written as G/H (effec-
tively), where G is a connected compact simple Lie group with
center {e} and H is a maximal connected proper subgroup of G
which has non-discrete center ZH .
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Let g be the Lie algebra of G and h that of H. Then we have
the standard decomposition of g:

g = h + m (as a vector space),
where h = {X ∈ g|σX = X}, m = {X ∈ g|σX = −X}, and
h = [m,m] is isomorphic to the holonomy algebra adm[m,m].

Any G-invariant complex structure on M is considered as J ∈
GL(m), satisfying the following conditions:
(1) J2 = −1.

(2) J · admX = admX · J for every X ∈ h.

(3) [JX, JY ]−J [JX, Y ]−J [X, JY ]−[X, Y ] = 0 for all X,Y ∈
m.
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We know that for an irreducible Hermitian symmetric space, the
complex structure J ∈ GL(m) is of the form J = admZ for some
Z ∈ zh. Since ZH is actually a cyclic group with the Lie algebra
zh of dimension 1, we have only two G-invariant complex structure
J and −J , which are compactible with the Riemannian metric.

Conjecture (Burstall-Rawnsley). An irreducible Hermitian
symmetric space {M, g, J} admit no compatible complex struc-
tures other than the original complex structure J and −J .

They showed that the conjecture holds for Hermitian symmetric
spaces of compact type. The proof is based on Twistor theory of
symmetic spaces they have developed. We have a counter-example
to the conjecture for Hermitian symmetric spaces of non-compact
type.
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For a non-compact simple Lie group G, we have Iwasawa de-
composition: G = SH, where S is a simply connected solvable
Lie group (called the Iwasawa group).
S acts simply-transitively on the Hermitian symmetric space

M = G/H. Hence, M can be considered as a homogeneous
Kähler solvable Lie group.

Let s be the Lie algebra of S. Then s is a non-unimodular and
split solvable Lie algebra, and has a so-called normal J-algebra
structure, which is defined as follows:

Definition. A normal J-algebra is a solvable Lie algebra with
an inner product <,> and a complex structure J ∈ GL(s) (J2 =
−1), satisfying the following conditions:
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(i)< JX, JY >=< X, Y > for all X,Y ∈ s.

(ii)< [X,Y ], JZ > + < [Y, Z], JX > + < [Z,X ], JY >= 0
for all X, Y, Z ∈ s.

(iii) [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ] = 0 for all
X, Y, Z ∈ s.

(iv) adsX has only real eigenvalues for all X ∈ s.

(v) there is a linear form ω such that < X, Y >= ω[JX, Y ].

A solvable Lie algebra satisfying (i), (ii), (iii) is called a solvable
Kähler algebra. A solvable Lie algebra satisfying (iv) is of split (or
completely solvable) type.
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Theorem. (due to Gindikin-Vinberg, Pyatetskii-Shariro) A
split solvable Kähler algebra s is decomposed into the semi-direct
sum of an abelian J-invariant ideal and a normal J-algebra.

The corresponding Lie group S is a homogeneous Kähler solv-
manifold which is biholomorphic to a direct product of Ck and a
bounded homogeneous domain D.

Definition. J-algebras {s; J} and {s′; J ′} are isomorphic if
there exists a Lie algebra isomorphism ϕ : s→ s′ such that ϕJ =
J ′ϕ.

Notes.
• It is known (due to Pyatetskii-Shapiro) that there exists one to
one correspondence between isomorphism classes of normal J-
algebras and biholomorphic equivalence classes of bounded ho-
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mogeneous domains.
• It is known (due to Dotti-Miatello) that irreducible normal J-
algebras {s; J} and {s′; J ′} are isomorphic up to sign if and only
if solvable Lie algebras s and s′ are isomorphic as Lie algebras.

Observation. There exists one to one correspondence between
complex structures J on a solvable Lie algebra g and complex Lie
subalgebras h which satisfy gC = h ⊕ h, given by J → hJ and
h→ Jh, where h = {X +

√
−JX|X ∈ g}.

For a complex structure J , the complex Lie subgroup HJ of GC
corresponding to hJ is closed, simply connected, and GC/HJ is
biholomorphic to Cm.

The canonical inclusion g ↪→ gC induces an inclusionG ↪→ GC,
23



and Γ = G ∩ HJ is a discrete subgroup of G. We have the
following canonical map g = i ◦ π:

G π→ G/Γ i
↪→ GC/HJ ,

where π is a covering map, and i is an inclusion. The left-invariant
complex structure J on G is the one induced by g from an open
set U = Im g ⊂ Cm.

Example. Let sm+1 be a solvable Lie algebra of dimension
2m + 2 with a basis β = {Xi, Yj, Z,W} for which the bracket
multiplications are defined by

[Xi, Yi] = −Z, [W,Xj] = 1
2
Xj, [W,Yk] = 1

2
Yk, [W,Z] = Z,

where i, j, k = 1, ...,m, and all other brackets are 0.
We can express sm+1 as the semi-direct sum of a nilpotent
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ideal nm generated by Xi, Yj, Z, i, j = 1, ...,m and an abelian
Lie algebra w generated by {W}.

The inner product <,> is defined with respect to which β is an
orthonormal basis.

The complex structure J is defined by
JW = Z, JZ = −W,JXi = Yi, JYj = −Xj,

where i, j = 1, ...,m.
It is easy to check that J is integrable, and a linear form ω

defined by
ω(Z) = 1, ω(Xi) = ω(Yj) = ω(W ) = 0,

satisfies < A,B >= ω([JA,B]) for any A,B ∈ sm+1; and thus
{sm+1; J} is a (irreducible) normal J-algebra.
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We now take another complex structure Jk on sm+1. The com-
plex structure Jk, k = 1, 2, ...,m is defined by

JkW = Z, JkZ = −W,JkXi = Yi, JkYi = −Xi, i = 1, 2, ..., k
and

JkXj = −Yj, JkYj = Xj, j = k + 1, 2, ...,m,
then Jk is compatible with the inner product and integrable, but
the condition (ii) of normal J-algebra does not hold (Kähler form
is not closed).

We see that the complex subalgebra h and hk of sC correspond-
ing to J and Jk is given by,

h = {W+
√
−1Z,X1+

√
−1Y1, X2+

√
−1Y2, ..., Xm+

√
−1Ym}C,

hk = {W+
√
−1Z, ..,Xk+

√
−1Yk, Xk+1−

√
−1Yk+1, .., Xm−

√
−1Ym}C
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where [W +
√
−1Z,Xi ±

√
−1Yi] = 1

2(Xi ±
√
−1Yi), i =

1, 2, ...,m.

The corresponding Lie group Sm+1 is expressed as

Sm+1 = Hm ⋊R,
where Hm is the Heisenberg group and the action ϕ : R →
Aut (Hk) is defined by

ϕ(s) :



1 x z

0 Im yt
0 0 1


→



1 e
1
2s x esz

0 Im e
1
2s yt

0 0 1


.

The complex subgroup H k of SC corresponding to hk is ex-
pressed as a semi-direct product Hk = Uk ⋊ V , where
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Uk =



1 u 1
2
√
−1∥u∥k

0 Im
√
−1εkut

0 0 1


, k = 1, 2, ...,m,

V = (



1 0
√
−1(es − 1)

0 Im 0
0 0 1


, s),

u ∈ Cm, s ∈ C, ∥u∥k = uϵkut (ϵk =


Im−k 0
0 −Ik

). Note

that Uk is an abelian subgroup of SC and V is a 1-parameter
subgroup of SC corresponding to W +

√
−1V .

Define ϕk : SC→ Cm+1 by
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(



1 u z

0 Im vt
0 0 1


, s)→ (u +

√
−1ϵkv, (< u,v > −2z)+

√
−1 (1

2
(∥u∥2k + ∥v∥2k) + 2es)).

Then, ϕk induces a biholomorphic map ϕk : SC/Hk → Cm+1,
and the image of Sm+1 is the open subset of Cm+1:

Sk = ϕk(Sm+1) = {(z, w) ∈ Cm+1 | Imw >
1
2
∥z∥2k}.

We know that S0 is biholomorphic to Dm+1 = {(z, w)| ∥z∥2 +
|w|2 < 1}, which is a complex hyperbolic (m + 1)-space (or a
Siegel domain of type II). And we can see that Sm is biholomorphic
to D′m+1 = {(z, w) ∈ Cm+1 | Imw < 1

2∥z∥
2}, which can be
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considered as CPm+1 − Dm+1 ∪ P , where P is a projective
m-plane tangent to the boundary of Dm+1.

Remark. The homogeneous complex solvmanifold Sk =
{Sm+1; Jk} is non-Kähler in any Sm+1-invariant metric: Sup-
pose it admits a Sm+1-invariant Kähler metric. Then {sm+1; Jk}
defines an irreducible split solvable Kähler algebra. Since sm+1 has
no Jk-invariant abelian ideal, it is an irreducible normal J-algebra.
But then, according to the above result of Dotti-Miatello, we
must have Jk = J, or− J . In particular, Sk is not biholomorphic
to S0 = {Sm+1;±J}.
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Strongly KT structure.

Definition. A strongly Kähler with torsion structure (or shortly
SKT structure on a differentiable manifold M is a Hermitian struc-
ture {h, J} on M with its associated fundamental form Ω satisfy-
ing ∂∂Ω = 0 or equivalently d dcΩ = 0, where dc =

√
−1(∂−∂).

In terms of the Bismut connection (the unique metric connection Ï
with respect to which J is parallel, ÏJ = 0 and its torsion 3-form
c(X, Y, Z) = g(X,TÏ(Y, Z)) is skew-symmetric), the condition
∂∂Ω = 0 is equivalent to dc = 0 where c is actually given by
c = −JdΩ.

Note.
• It is known (due to Gauduchon) that any compact Hermitian
manifold of dimension 4 admits a SKT structure in the conformal
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class of the given Hermitian metric.
• For a compact (non-Kähler) Hermitian manifold of dimension
greater than 6, SKT structure and LCK structure (which will
be defined next) are mutually exclusive (due to Alexandrov and
Ivanov).
• For a bi-Hermitian manifold {M,h, J±} with its associated fun-
damental forms Ω+,Ω− satisfying that dc+Ω+ = −dc−Ω− = 0
is d-closed, both {h, J+} and {h, J−} define STK structures on
M .
•Any compact Lie group of even dimension admits a homoge-
neous SKT structure (due to Spindel et al).
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Locally conformally Kähler structure.

Definition. A locally conformally Kähler structure (or shortly
LCK structure) on a differentiable manifold M is a Hermitian
structure (h, J) on M with its associated fundamental form Ω
satisfying dΩ = θ ∧ Ω for some closed 1-form θ (which is called
Lee form).

Note.
•A LCK structure Ω is locally conformally Kähler, in the sense
that there is a open covering {Ui} of M such that Ωi = e−σi Ω
is Kähler form on Ui for some functions σi, that is, dΩi = 0.
The condition dΩ = θ ∧ Ω is equivalent to the existence of a
global close 1-form θ such that θ|Ui = dσi.
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•A LCK structure Ω is globally conformally Kähler (or Kähler) if
and only if θ is exact (or 0 respectively).

Definition. A homogeneous locally conformally Kähler (or ho-
mogeneous l.c.K ) manifold M is a homogeneous Hermitian mani-
fold with its homogeneous Hermitian structure h, defining a locally
conformally Kähler structure Ω on M .

Definition. If a simply connected homogeneous LCK manifold
M = G/H, where G is a connected Lie group and H a closed
subgroup of G, admits a free action of a discrete subgroup Γ of
G on the left, then we call a double coset space Γ\G/H a locally
homogeneous LCK manifold.
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Observation. Classification of non-Kähler complex surfaces
with b2 = 0 is known: Kodaira surfaces, Inoue surfaces, properly
elliptic surfaces of odd type or Hopf surfaces. Except for the class
of Hopf surfaces with eigenvalues λ1, λ2 (|λ1| ̸= |λ2|), all of these
non-Kähler complex surfaces, up to small deformations, admit ei-
ther homogeneous or locally homogeneous LCK structures.

In fact, we can express each of these LCK complex surfaces S
as Γ\G (up to finite covering), where G is a 4-dimensional Lie
group with lattice Γ which admits homogeneous l.c.K structures.

It is known (due to Brunella) that Kato surfaces, which are non-
Kähler complex surfaces with b2 > 0, also admit LCK structures.
There is a conjecture that Kato surfaces exhaust all non-Kähler
complex surfaces with b2 > 0.
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The following is a list of all 4-dimensional unimodular Lie alge-
bras g with LCK structure, defining LCK complex surfaces, where
the Lie algebra g is generated by X,Y, Z,W with only non-zero
bracket multiplication specified.

(1) Primary Kodaira surface:
[X,Y ] = −Z

(2) Secondary Kodaira surface:
[X,Y ] = −Z, [W,X ] = −Y, [W,Y ] = X

(3) Inoue surface S±:
[Y, Z] = −X, [W,Y ] = Y, [W,Z] = −Z

(4) Inoue surface S0:
[W,X ] = −1

2X − bY, [W,Y ] = bX − 1
2Y, [W,Z] = Z
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(5) Properly elliptic surface:
[X,Y ] = −Z, [Z,X ] = Y, [Z, Y ] = −X

(6) Hopf surface:
[X,Y ] = −Z, [Z,X ] = −Y, [Z, Y ] = X

For all cases, we have a complex structure defined by

JX = −Y, JY = X, JZ = −W,JW = Z,

and its compatible LCK form Ω = x ∧ y + z ∧ w with the Lee
form θ = w, where x, y, z, w are the Maurer-Cartan forms corre-
sponding to X, Y, Z,W respectively.
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Notes.
• For Inoue surfaces of type S+, we have other complex structures
on g:

JX = Y, JY = −X, JZ = W − qY, JW = −Z − qX,
with no-zero real number q, defining a complex structure on
S+ for which there exist no compatible LCK structures (due to
Belgun).

• For Hopf surfaces, we have other complex structures on g

JX = Y, JY = −X, JZ = W + dZ, J(W + dZ) = −Z,
with no-zero real number d, defining a homogeneous LCK struc-
ture on Hopf surface, as we will discuss in detail later.
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Generalization of some of the above LCK complex
surfaces to the higher dimension.

(i) Let h2n+1 be the Heisenberg Lie algebra of dimension 2n + 1,
which is a nilpotent Lie algebra generated by X1, X2, ..., Xn,
Y1, Y2, ..., Yn, Z with non-zero bracket multiplication:

[Xi, Yi] = −Z, i = 1, 2, ..., n.
A nilpotent Lie algebra g = R1×h2n+1 admits a LCK structure
Ω:

Ω = z ∧ w + n∑
i=1

xi ∧ yi
with the Lee form θ = w, where xi, yj, z, w are the Maure-
Cartan forms corresponding to Xi, Yj, Z,W respectively; and a
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complex struture J :

JZ = W,JW = −Z, JXi = Yi, JYi = −Xi, i = 1, 2, ..., n.
The corresponding Lie group G admits a lattice Γ, defining a lo-
cally homogeneous LCK structure on its compact quotient space
Γ\G. This is a generalization of primary Kodaira surface.

(ii) Let g be a solvable Lie algebra of dimension 2n+ 2, generated
by X, Y, Z1, Z2, ..., Zn,W1,W2, ...,Wn with non-zero bracket
multiplication:

[Wi, X ] = −1
2
X − biY, [Wi, Y ] = biX −

1
2
Y, [Wi, Zj] = 1

n
Zj,

where i = 1, 2, ..., n, j = 1, 2, ..., n.
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The solvable Lie algebra g admits a LCK structure Ω:

Ω = x ∧ y + n
n∑

i,j=1
zi ∧ wj,

with the Lee form θ = 1
n

∑n
i=1wi, where x, y, zi, wj are the

Maure-Cartan forms corresponding to X, Y, Zi,Wj respectively;
and a complex structure J :

JX = Y, JW = −Z, JZi = Wi, JWi = −Zi, i = 1, 2, ..., n.
The corresponding Lie group G admits a lattice Γ (due to
Oeljeklaus-Toma), defining a locally homogeneous LCK structure
on its compact quotient space M = Γ\G. This is a generaliza-
tion of Inoue surface S0. We have b1(M) = dimH1(g) =
dim g/[g, g] = n.
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Definition. A LCK manifold M is of Vaisman type if its Lee
form θ is parallel w.r.t. the Levi-Civita connection of h; or equiv-
alently, the Lee field ξ = h−1θ is parallel.

Definition. We define an exterior differential dθ on the de
Rham compex Λ∗(M) of a LCK manifold M as

dθ : w → −θ ∧ w + dw,

which satisfies d2
θ = 0 for w ∈ Λ∗(M). We call Hk

θ (M) the k-th
twisted cohomology group with respect to θ.

• For a LCK manifold M of Vaisman type, all Hk
θ (M) vanish (due

to de León-López-Marrero-Pardón)
• For a reductive or nilpotent Lie algebra g, all Hk

θ (g) vanish.
(due to Hochschild-Serre, Diximier respectively)
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Notes.
• For locally homogeneous LCK manifold Γ\G, we can check
whether the Lee filed ξ is parallel or not, by using the formula:

h(ÏXξ, Y ) = h([X, ξ], Y )− h([ξ, Y ], X) + h([Y,X ], ξ)
for any X, Y ∈ g. Since dθ(Y,X) = h([Y,X ], ξ) = 0, the Lee
filed ξ is parallel if and only if it is Killing.
• For locally homogeneous LCK manifold Γ\G, where G is simply
connected solvable Lie group, there is a canonical injection

Hk
θ (g) ↪→ Hk

θ (Γ\G).
(cf. Raghunathan; Discrete subgroups of Lie groups)
• In the above examples, (i) is of Vaisman type, and (ii) is not.
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Examples.
• For secondary Kodaira surface, the Lee filed ξ = W , and the
bracket multiplication is given by [X,Y ] = −Z, [W,X ] =
−Y, [W,Y ] = X . We get by simple calculation,

h(ÏUW,V ) = h([W,U ], Y ) + h(U, [W,V ]) = 0
for any U, V ∈ g. It is also easy to check Ω = −w ∧ z + dz.
• For Inoue surface S±, the Lee filed ξ = W , and the bracket
multiplication is given by [Y, Z] = −X, [W,Y ] = Y, [W,Z] =
−Z. The Lee field ξ = W is not Killing:

h(ÏZW,Z) = h([W,Z], Z) + h(Z, [W,Z]) = −2h(Z,Z) ̸= 0.
It is also easy to check that there is no invariant 1-form v such
that Ω = −w ∧ v + dv; and thus no such 1-form v on S±.
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Definitions.
•A contact metric structure {ϕ, η, J̃ , g} on M2n+1 is a contact
structure ϕ , ϕ ∧ (dϕ)n ̸= 0 with the Reeb field η , i(η)ϕ =
1, i(η)dϕ = 0, a (1, 1)-tensor J̃ , J̃2 = −I + ϕ ⊗ η and a Rie-
mannian metric g , g(X,Y ) = ϕ(X)ϕ(Y ) + d ϕ(X, J̃Y ).
•A Sasaki structure on M2n+1 is a contact metric structure
{ϕ, η, ψ, g} satisfying Lηg = 0 (Killing field) and the integra-
bility of J = J̃ |D on D = kerϕ (CR-structure).
• For any Sasaki manifold N , its Kähler cone C(N) is defined as
C(N) = R+ × N with the Kähler form ω = rdr ∧ ϕ + r2

2 dϕ,
where a compatible complex structure Ĵ is defined by Ĵη = 1

r∂r
and Ĵ |D = J .
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Note. For any Sasaki manifold N with contact form ϕ, we
can define a LCK form Ω = 2

r2ω = 2
rdr ∧ ϕ + dϕ; or taking

t = −2 log r, Ω = −dt ∧ ϕ + dϕ on M = R × N or S1 × N ,
which is of Vaisman type. We can define a family of complex
structures J compatible with Ω by

J ∂t = b ∂t + (1 + b2) η, Jη = −∂t − b η,
where b ∈ R and the Lee field is Jη. Conversely, any simply
connected complete Vaisman manifold is of the form R×N with
LCK structure as above, where N is a simply connected complete
Sasaki manifold.

Remark. It is known (due to Ornea and Verbitsky) that a
compact Vaisman manifold is a fiber bundle over S1 with fiber a
compact Sasaki manifold.
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Homogeneous and locally homogeneous LCK
structures on Hopf surfaces.

Let g = u(2) = R + su(2) be a reductive Lie algebra with basis
{T,X, Y, Z} of g, where T is a generator of the center R of g,
and

X = 1
2


√
−1 0
0 −

√
−1

 , Y = 1
2


0
√
−1√

−1 0

 , Z = 1
2


0 −1
1 0

 ,

satisfying the bracket multiplications

[X,Y ] = Z, [Y, Z] = X, [Z,X ] = Y.

Then g admits a family of complex structures Jδ, δ = c+
√
−1 d

(c ̸= 0) defined by

Jδ(T−dX) = cX, Jδ(cX) = −(T−dX), JδY = ±Z, JδZ = ∓Y.
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Homogeneous Hopf surfaces. Let G = S1×SU(2) (which
is diffeomorphic to S1 × S3). Then all homogeneous complex
structures on G admit their compatible homogeneous LCK struc-
tures, defining a primary Hopf surfaces Sλ which are compact
quotient spaces of the form W/Γλ, where W = C2\{0} and Γλ
is a cyclic group of holomorphic automorphisms on W generated
by a contraction f : (z1, z2)→ (λz1, λz2) with |λ| ̸= 0, 1.

Proof. We consider a canonical diffeomorphism Φδ:

Φδ : R × SU(2) −→W

defined by
(t, z1, z2) −→ (λtδz1, λ

t
δz2),

where λδ = ec+
√
−1 d and SU(2) is identified with
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S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} by the correspondence:
z1 −z2
z2 z1

←→ (z1, z2).

Then we see that Φδ is a biholomorphic map. It is now clear
that Φδ induces a biholomorphism between G = S1×SU(2) with
homogeneous complex structure Jδ and a primary Hopf surface
Sλδ = W/Γλδ. Q.E.D.

Remark. We have the Lee field ξ = T − d
cX , which is irregular

for an irrational dc , and the Reeb field η = cX , which is always
regular.

Note. U(2) is a quotient Lie group ofG by the central subgroup
Z2 = {(1, I), (−1,−I)}.
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We can also consider = S1 × S3 as a compact homogeneous
space G̃/H, where G̃ = S1 × U(2) with its Lie algebra g̃ =
R + u(2) and H = U(1) with its Lie algebra h. Then, we have a
decomposition g̃ = m + h for the subspace m of g̃ generated by
S, T, Y, Z and h generated by W , where

S = 1
2


√
−1 0
0
√
−1

 , W = 1
2


0 0
0
√
−1

 .

Locally homogeneous Hopf surfaces. Let Ĝ = R×U(2),
and let Γp,q (p, q ̸= 0) be a discrete subgroup of Ĝ defined by

Γp,q = {(k,

e
√
−1 pk 0
0 e

√
−1 qk

) ∈ R × U(2) | k ∈ Z}.
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Then Γp,q\Ĝ/H is biholomorphic to a Hopf surface Sp,q =
W/Γλ1,λ2, where Γλ1,λ2 is the cyclic group of automorphisms on
W generated by

ϕ : (z1, z2) −→ (λ1z1, λ2z2)

with λ1 = er+
√
−1 p, λ2 = er+

√
−1 q, r ̸= 0.

In fact, if we take a homogeneous complex structure Jr on Ĝ/H
induced from the diffeomorphism

Φr : Ĝ/H → W

defined by
(t, z1, z2) −→ (ertz1, e

rtz2),
Φr induces a biholomorphism between Γp,q\Ĝ/H and Sp,q.
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Homogeneous Hopf manifolds.
Let M = G/H, where G = S1×SU(n) and H = SU(n− 1),

which is diffeomorphic to S1 × S2n+1. Then M admits a homo-
geneous LCK structure. The Lie algebra g = R + su(n) has a
decomposition:

g = m + h,

satisfying [h,m] ⊂ m, where h = su(n − 1), and m is generated
by T,X, Yi, Zj (i, j = 1, 2, ..., n − 1) with a generator T of the
center R, and non-zero bracket multiplications:

[Yi, Zi] = −X mod h (i = 1, 2, ..., n− 1).
We have a LCK form Ω and the Lee form θ:

Ω = t ∧ x + n∑
i=1

yi ∧ zi, θ = t.
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As in the case n = 1, g admits a family of complex structures
Jδ, δ = c +

√
−1 d defined by

Jδ(T−dX) = cX, Jδ(cX) = −(T−dX), JδYi = Zi, JδZi = −Yi,
where c ̸= 0, i = 1, 2, ..., n − 1, defining a homogeneous LCK
structure of Vaisman type on M .

Note. S2n+1 = SU(n)/SU(n − 1) admits a homogeneous
Sasaki structure: we have a Hopf fibration S2n+1 → CPn with
fiber S1 = U(n − 1)/SU(n − 1) and the base space CPn =
SU(n)/U(n− 1). It has a homogeneous contact form x, defining
a Kähler structure ω = dx on CPn defined by

ω = n∑
i=1

yi ∧ zi .
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Structure of compact homogeneous LCK manifolds
Theorem. A compact homogeneous LCK manifold M is bi-

holomorphic to a holomorphic principal fiber bundle over a flag
manifold with fiber a 1-dimensional complex torus T 1

C. And its
LCK structure is of Vaisman type.

To be more precise, we can express M as a homogeneous space
form G/H, where G is a compact connected Lie group of holo-
morphic isometries on M which is of the form

G = S1 × S,
where S is a compact semi-simple Lie group, including a closed
subgroup H of G.
S/H is a compact homogeneous Sasaki manifold, which is a

principal fiber bundle over a flag manifold S/Q with fiber S1 =
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Q/H for some parabolic subgroup Q of S including H.
Sketch of Proof. Since G is a compact Lie group, it is reductive;

and its Lie algebra g is of the form:

g = t + s,

where t is the center of g and s a semi-simple Lie algebra with
[g, g] = s. Since the Lee form θ is closed but not 0, we must have
θ ∈ t∗. Let ξ be the Lee field with θ(ξ) = 1, and η = Jξ (the
Reeb field) for the complex structure J with its Maerer-Cartan
form ϕ. Then we can express g as

g =< ξ > +g′, g′ =< η > + k,

where < ξ > is the 1-dimensional subspace of g generated by ξ,
k = kerϕ|g′ with k ⊃ h, and both of these sums are orthogonal
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direct sums with respect to the Hermtian metric h.
We can see
• 1 ≤ dim t ≤ 2, and ξ, η are infinitesimal automorphisms of J
and infinitesimal isometries (Killing fields) with respect to h.
• The case dim t = 2 can be reduced to the case dim t = 1.

Let q =< η > +h, then q is a Lie subalgebra of g′; in fact we
have q = {X ∈ g′ | dϕ(X, g′) = 0}. Then, h is an ideal of q.

Let S andQ be the corresponding Lie subgroup ofG, thenQ is a
closed subgroup of S since we have Q = {x ∈ S | ad(x)∗ϕ = ϕ};
in particular, H is a normal subgroup of Q with Q/H = S1, and
η generates an S1 action on S.

Since dϕ defines a homogeneous symplectic structure on
kmod h, S/Q admits a homogeneous symplectic structure com-
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patible with J , defining a Kähler structure on S/Q (due to Borel).
We can see that the Lie subalgebra < ξ > + < η > of g

corresponds to a 2-dimensional torus T 2 of G; ξ −
√
−1η defines

a 1-dimensional complex torus action on M = G/H on the right
which is holomorphic and isometric. We have M = S1 × S/H,
where S/H → S/Q is a principal S1-bundle over the flag manifold
S/Q; and M → S/Q is a holomorphic principal fiber bundle over
the flag manifold S/Q with fiber T 1

C. Q.E.D.

Corollary There exist no compact complex homogeneous LCK
manifolds; in particular, no compact complex paralellizable mani-
folds admit their compatible LCK structures.

Proof. Only compact complex Lie groups are complex tori,
which can not act transitively on a compact LCK manifold. Q.E.D.

57



Example. There exists a LCK structure on g = R⊕ sl(2,R),
which is not of Vaisman type. Take a basis {W,X, Y, Z} for g

with bracket multiplication defined by

[X,Y ] = −Z, [Z,X ] = Y, [Z, Y ] = −X,
and all other brackets vanish. We have a homogeneous complex
structure defined by

JY = X, JX = −Y, JW = Z, JZ = −W,
and its compatible LCK form Ω on g defined by

Ω = z ∧ w + x ∧ y,
with the Lee form θ = w, where x, y, z, w are the Maurer-Cartan
forms corresponding to X,Y, Z,W respectively. We can take an-
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other LCK form
Ωψ = ψ ∧ w + dψ,

where ψ = by + cz (b, c ∈ R) with 0 < b < c and c2 − b2 = c,
making the corresponding metric hψ positive definite. The Lee
field ξ is given as

ξ = 1
c2 − b2

(cW + bX).

It is easy to check that h([ξ,X ], Y ) + h(X, [ξ, Y ]) ̸≡ 0; and
thus ξ is not a Killing field.

For any lattice Γ of G = R × S̃L(2,R) with the above ho-
mogeneous l.c.K. structure, we get a complex surface Γ\G (prop-
erly elliptic surface) with locally homogeneous non-Vaisman l.c.K.
structure.
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Generalized Hopf manifolds and their Deformation.
A generalized Hopf manifold is, a compact complex manifold of

which the universal covering is W = Cn − {0}. We call it here
simply a Hopf manifold.

Let M = W/G be a Hopf manifold, where G is the covering
transformation group of M consisting of analytic automorhisms
over Cn which fixes the origin 0. G acts on W properly discon-
tinuously and fixed point free. We can express G as

G = H ⋊ Z,
where Z is an infinite cyclic group generated by a contraction ρ on
W , and H is a finite normal subgroup of G. There exists m ∈ N
such that for Z ′ =< ρ′ >, ρ′ = ρm, G′ = H × Z ′ is a normal
subgroup of finite index in G. We write G,Z in place of G′, Z ′.
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We can see that W/G is diffeomorphic to S1 × S2n−1/H,
where H is a finite unitary group acting freely on S2n−1. In fact,
we can construct a complex analytic family {M(t), t ∈ C} which
deforms W/G to W/l(G), where l(G) is the linear transformation
group on W consisting of linear terms of g ∈ G.

Let Tt, (t ̸= 0) be an analytic automorphism over W defined by

Tt(z1, z2, ..., zn) = (tz1, tz2, ..., tzn),
and set gt = T−1

t gTt, G(t) = {gt | g ∈ G′} and G(0) = l(G).
We can see by Cartan’s uniqueness theorem that the canoni-

cal map G → G(0) is a group isomorphism, and G(0) acts on
W properly discontinously and fixed-point free. It follows that
{M(t) = W/G(t), t ∈ C} defines a complex analytic family.
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We can further deform a Hopf manifoldM = W/G toW/l0(G)
with l0(G) = l0(Z)× l0(H), where l0(Z) is generated by a diag-
onal matrices d(α1, α2, ..., αn) with eigenvalues of α1, α2, ..., αn
of the linear term of the generator ρ of Z and l0(H) ⊂ U(n).

In fact, we can assume that ρ is of Jordan form J(α, n). Let
Tt, (t ̸= 0) be an analytic automorphism over W defined by

Tt(z1, z2, ..., zn) = (tn−1z1, t
n−2z2, ..., zn),

and set gt = T−1
t gTt, G(t) = {gt | g ∈ G}, which defines a

complex analytic family with G(0) = l0(G).
As a consequence, a Hopf manifold M = W/G has a

primary Hopf manifold M̂ = W/Z as a finite normal cov-
ering, which can be deformed to a diagonal Hopf manifold
M̂0 = W/d(α1, α2, ..., αn). (cf. K.H., Illinois J. Math. 1993)
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Kähler potential and LCK structures
Observation. A LCK structure on M may be defined as a

Kähler structure ω̃ on the universal covering M̃ on which the the
fundamental group Γ acts homothetically; that is, for every γ ∈ Γ,
γ∗ω̃ = ρ(γ)ω̃ holds for some positive constant ρ(γ).

Let M = G/H be a homogeneous LCK manifold. Then its
universal covering M̃ = G̃/H̃0 is also a homogeneous LCK man-
ifold. Since the Lee form θ̃ is exact, Ω̃ is globally conformal to a
Kähler structure ω̃. The Lie group G̃ acts homothetically on M̃
on the left, and the fundamental group Γ = H̃/H̃0 acts on M̃

homothetically on the right. Conversely, a Kähler structure ω̃ on
M̃ with homothetic action of G̃ on the left and Γ from the right
on M̃ defines a LCK structure on M .
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Definition. Let M be a LCK manifold. Suppose that the
universal covering M̃ admits a Kähler potential ϕ, which is a real
positive function on M̃ such that ω̃ = −

√
−1∂∂ϕ defines a Kähler

structure on M̃ . If the fundamental group Γ acts homothetically
on ϕ, then we call ϕ a LCK potential for M . ω̃ clearly defines a
LCK structure on M .

Example. A diagonal Hopf surfaces Sλ = W/Γλ, where Γλ is
generated by a contraction f : (z1, z2) → (λz1, λz2) with |λ| ̸=
0, 1 on W , admits a LCK potential

ϕ(z1, z2) = |z1|2 + |z2|2.
We have a Kähler structure ω̃ = −

√
−1 (d z1∧d z1 +d z2∧d z2)

on W for which ω̃ = −
√
−1∂∂ϕ holds.
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Generalized Hopf manifold and their LCK structures
We know (due to Ornea-Verbitsky) that a small deformation of

a compact LCK manifold with potential is also a LCK manifold
with potential. In other words, LCK structure with potential is
preserved under small deformations.

We have seen that any primary Hopf manifold can be deformed
to a diagonal Hopf manifold, which admits a LCK potential. Hence
we see that any Hopf manifold admits a LCK structure.
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