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1. Growth rates of hyperbolic Coxeter groups

Hyperbolic Coxeter polyhedron P = ∩k
i=1H−

i ⊂ Hn

all dihedral angles are π/n, (n ∈ N ∪ {∞})
P is represented by its Coxeter diagram

３ ３

３

２
２

３

Geometric Coxeter group (W, S)
S = {r1, r2, · · · , rk}, W = 〈r1, r2, · · · , rk〉
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Growth function of (W, S)

fS(t) =
∑

k≥0 aktk = 1 + "St + · · ·
where ak = "{g ∈ W | #S(g) = k}

The growth rate of (W, S): τ := lim supk→∞ k
√

ak

= 1/R (R: the radius of convergence of fS(t))

τ > 1 i.e. of exponential growth (de la Harpe 87?)
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Theorem (Steinberg 68)
Let us denote by (WT, T ) the Coxeter subgroup of (W, S)
generated by the subset T ⊆ S, and let its growth func-
tion be fT (t). Set F = {T ⊆ S : WT is finite }. Then

1

fS(t−1)
=

∑

T∈F

(−1)|T |

fT (t)
.

Theorem (Solomon 66)
The growth function fS(t) of an irreducible finite Coxeter
group (G, S) can be written as fS(t) =

∏k
i=1[mi+1] where

[n] := 1 + t + · · · + tn−1 and {m1, m2, · · · , mk} is the set
of exponents of (G, S).
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1
fS(t−1)

= Q̃(t)/P̃ (t) ⇒ fS(t) = P (t)/Q(t)

where P (t) = tnP̃ (t), Q(t) = tnQ̃(t).
Hence R = 1/τ is the smallest positive root of Q(t).
Since Q̃(t) is monic, τ > 1 is an algebraic integer.
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type of subgroup growth function number
A3 [2,3,4] 2

A2 × A1 [2,2,3] 1
A2 [2,3] 4

A1 × A1 [2,2] 2

1

fS(t−1)
=

−2

[2,3,4]
+

−1

[2,2,3]
+

4

[2,3]
+

2

[2,2]
+

−4

[2]
+ 1.

fS(t) =
(t + 1)(t2 + 1)(t2 + t + 1)

(t − 1)(t3 + t − 1)
.
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A real algebraic integer τ > 1 is called:

(1) a Salem number if τ−1 is a conjugate of τ and all
conjugates of τ other than τ and τ−1 lie on the unit
circle. We assume also that there exists a conjugate on
the unit circle.

(1’) a “Salem” number if τ−1 is a conjugate of τ and
all conjugates of τ other than τ and τ−1 lie on the unit
circle (i.e. quadratic units are also “Salem” number).
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QUIZ: Which is Salem or “Salem”?
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A real algebraic integer τ > 1 is called:

(2) a Pisot number if all algebraic conjugates of τ other
than τ lie in the open unit disk.

(3) a Perron number if all of whose conjugates have
strictly smaller absolute values.

1
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Theorem (Cannon-Wagreich 92, Parry 93)
The growth rates of cocompact 2 and 3-dimensional hy-
perbolic Coxeter groups are “Salem” numbers.

Theorem (Floyd 92)
The growth rates of cofinite 2-dimensional hyperbolic
Coxeter groups are Pisot numbers.

Theorem (K. and Umemoto 2012)
The growth rates of cofinite 3-dimensional hyperbolic
Coxeter groups with 4 and 5 generators (i.e. simplexes,
pyramids and prisms) are Perron numbers.1
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Remark

(1) Kellerhals and Perren (2011) observed numerically
that many cocompact 4-dimensional hyperbolic Coxeter
groups (including 5 and 6 generated groups) have Perron
numbers as their growth rates.

(2) Kolpakov (2012) studied cofinite 3-dimensional hy-
perbolic Coxeter groups whose growth rated are Pisot
numbers.

1
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(3) Kellerhals (2011?) conjectured that every hyperbolic
(W, S) has a Perron number as its growth rate. It seems
to be a delicate problem heavily depending on the system
of generators S:

An example of Mach̀ı:
G = Z/2Z ∗ Z/3Z, S = {a, b±}. Then
fS(t) = (1 + t)(1 + 2t)/(1 − t)(1 − 2t2).

1
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2. Cocompact 2 and 3-dimensional hyperbolic Coxeter groups

Theorem (Cannon-Wagreich 92, Parry 93)
The growth rates of cocompact 2 and 3-dimensional hy-
perbolic Coxeter groups are “Salem” numbers.

1
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Proposition (Parry 93)
Let c2, · · · , cN ∈ N ∪ {0} be such that

∑N
n=2

n−1
n cn > 2.

Let R(x) be the rational function

R(x) =
x + 1

x − 1
+

N∑

n=2
cn

x − xn

(x − 1)(xn − 1)
=

P (x)

Q(x)

where P (x) and Q(x) are relatively prime Z-polynomials.
Then P (x) is a product of distinct irreducible cyclotomic
polynomials with exactly one “Salem” polynomial.

1
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Salem or “Salem”? (K. 2013)
dim=2: pentagon with angles π/2,π/4,π/4,π/4,π/4

1/fS(x−1) = 1 +
x − x2

(x + 1)(x2 − 1)
+

4(x − x4)

(x + 1)(x4 − 1)

=
(x2 − 4x + 1)(x2 + x + 1)

(x + 1)2(x2 + 1)

fS(x) =
(x + 1)2(x2 + 1)

(x2 − 4x + 1)(x2 + x + 1)

1
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dim=3: Lambert cube

1/fS(x−1) = 1 −
6

x + 1
+

9

(x + 1)2
+

3

(x + 1)(x3 + x2 + x + 1)

−
2

(x + 1)3
−

6

(x + 1)2(x3 + x2 + x + 1)

=
(x − 1)(x2 − 3x + 1)(x2 + x + 1)

(x + 1)3(x2 + 1)

fS(x) =
(x + 1)3(x2 + 1)

(x − 1)(x2 − 3x + 1)(x2 + x + 1)

1
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3. Cofinite 3-dimensional hyperbolic Coxeter groups

Classification of cofinite 3-dim. Coxeter simplexes (Lannér 50)
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• (t − 1)(t4 + t3 + t2 + t − 1)

• (t − 1)(3t2 + t − 1)

• (t − 1)(t7 + t6 + 2t5 + 2t4 + t3 + t2 − 1)

• (t − 1)(t9 + t7 + t6 + t4 + t2 + t − 1)

• (t − 1)(2t5 + t4 + t2 + t − 1)

• (t − 1)(t7 + t6 + t5 + t4 + t3 − 1)

1
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Classification of cofinite 3-dim.Coxeter pyramids (Tumarkin 2004)

k = 2, 3, 4 ;  

 l = 3, 4 ;

m = 2, 3, 4 ;

 n = 3, 4 .

k = 5, 6 ;

 l = 2, 3, 4, 5, 6 .

m = 2, 3 ;

2
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• (k, l, m, n) = (2,3,2,3) : (t−1)(t5+2t4+2t3+t2−1)

• (2,3,2,4) : (t − 1)(t7 + t6 + 2t5 + t4 + 2t3 + t − 1)

• (2,3,3,3) : (t − 1)(t4 + 2t3 + t2 + t − 1)

• (2,3,3,4) : (t−1)(t7+2t6+2t5+2t4+2t3+t2+t−1)

• (2,3,4,4) : (t − 1)(t5 + t4 + t3 + 2t − 1)

• (2,4,2,4) : (t − 1)(t4 + 2t3 + t2 + t − 1)

2
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Proposition (K. and Umemoto 2012)
Consider the Z-polynomial of degree n ≥ 2

g(t) =
n∑

k=1
aktk − 1,

where ak is a non-negative integer. We also assume that
the greatest common divisor of {k ∈ N | ak 0= 0} is 1.
Then there is a real number r0, 0 < r0 < 1 which is the
unique zero of g(t) having the smallest absolute value of
all zeros of g(t).

2
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Classification of cofinite 3-dim. Coxeter prisms (Kaplinskaya 74)

55

5

P2

P1

T

P : a non-compact hyp. Coxeter prism with k ≥ 7.

2
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Then the growth function fP1
(t) of P1 of the non-compact

straight hyperbolic Coxeter prism P1 with Coxeter dia-
gram

k6

can be calculated as

(t + 1)3(t2 − t + 1)(t2 + t + 1)(tk−1 + · · · + t + 1)

(t − 1)Q1(t)

where Q1(t) = 2tk+4 + 3tk+3 + 4tk+2 + 5tk+1 + 6tk +
· · · + 6t6 + 5t5 + 3t4 + 2t3 + t2 − 1,

2
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while the growth function fP2
(t) of the compact straight

hyperbolic Coxeter prism P2 with Coxeter diagram

k

is equal to

(t + 1)3(t2 + 1)(t2 + t + 1)(tk−1 + · · · + t + 1)

(t − 1)Q2(t)
.

where Q2(t) = −tk+5− tk+4+2tk+2+4tk+1+5tk + · · ·+
5t5 + 4t4 + 2t3 − t − 1.2
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Now P is the “amalgam” of P1 and P2 along T , the
growth function fP (t) of P satisfies

1

fP (t)
=

1

fP1
(t)

+
1

fP2
(t)

− (
1 − t

1 + t
)

1

fT (t)

where fT (t) is the growth function of the hyperbolic tri-
angle T with Coxeter diagram

k

(t + 1)2(t2 + t + 1)(tk−1 + · · · + t + 1)

tk+3 + tk+2 − tk − · · ·− t3 + t + 1
.

2
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As a conclusion, fP (t) of the prism P can be written as

(t + 1)3(t + 1)2(t2 − t + 1)(t2 + t + 1)(tk−1 + · · · + t + 1)

(t − 1)Q(t)

where

Q(t) = 2tk+6 + 4tk+5 + 7tk+4 + 10tk+3 + 12tk+2 + 14tk+1

+ 15tk + · · · + 14t7 + 12t6 + 9t5 + 6t4 + 3t3 + t2 − 1.

Theorem (K. and Umemoto 2012)
The growth rates of cofinite 3-dimensional hyperbolic
Coxeter groups with 4 and 5 generators (i.e. simplexes,
pyramids and prisms) are Perron numbers.

2
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4. 2-Salem numbers as growth rates of 4-dim. Coxeter groups

Definition (Samet 52, Kerada 95)
A real algebraic integer α > 1 is called a 2-Salem number
if it has a real conjugate β > 1 while other conjugates
ω satisfy |ω| ≤ 1 and at least one of them is on the unit
circle.
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Coxeter garlands (T. Zehrt and C. Zehrt 2011)
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Gluing formula (T. Zehrt and C. Zehrt)
Consider two Coxeter n-polytope P1 and P2 having the
same orthogonal face F which is a Coxeter (n-1)-polytope,
and let their growth functions be W1(t), W2(t) and F (t)
respectively. Then the growth function W1 ∗P0

W2(t) of
the Coxeter polytope obtained by gluing P1 and P2 along
F is given by

1

W1 ∗F W2(t)
=

1

W1(t)
+

1

W2(t)
+ (

t − 1

1 + t
)

1

F (t)

3
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Let Gn be the Coxeter polytope constructed from n

copies of G by (n-1)- gluings along orthogonal facets
of G. Then the growth function of Gn is equal to
[2,2,5,6](t5 + 1)/Zn(t) where

Zn(t) = t16 − 2(n + 1)t15 + t14 + (n − 1)t13 + t12 + nt11

+(n − 1)t10 + 2t9 + 2(n − 1)t8 + 2t7 + (n − 1)t6

+nt5 + t4 + (n − 1)t3 + t2 − 2(n + 1)t + 1.

They showed that Zn(t) has 2 reciprocal pairs of posi-
tive real zeros and all the other zeros locate on the unit
circle. Hence Coxeter garlands have “2-Salem” numbers
as their growth rates.

3
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Proposition (Kempner 35, T. Zehrt and C. Zehrt)
For f ∈ Z[t] be a palindromic polynomial of even degree
n ≥ 2 with f(±1) 0= 0, define g(u) ∈ Z[u] by

g(u) := (
√

u − i)nf(
√

u + i
√

u − i
).

Then
(1) f(t) has 2k zeros on the unit circle iff g(u) has k
positive real zeros.
(2) f(t) has 2# real zeros iff g(u) has # negative real
zeros.

3
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Proposition (K. 2013)
Denominator polynomials Zn(t) are irreducible for any
n ∈ N. Hence Coxeter garlands have 2-Salem numbers
as their growth rates.

Key idea: Zn(i) = 2 for all n ∈ N.

Suppose that Zn(t) is reducible in Z[t] as

(t2 + pt + 1)(t14 + · · · + 1).

Then Zn(i) = pi(a + bi) = 2 implies that p = −2 or p =
−1 which means t = 1 or t = 1±

√
3i

2 must be a solution

of Zn(t), but Zn(1) = 4n, Zn(1±
√

3i
2 ) = (1 ∓

√
3)(n + 1),

a contradiction.

3
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Coxeter dominoes (Yuriko Umemoto 2013)
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Let D#,m,n be the Coxeter polytope constructed from
n + 1 copies of D by #, m and #− m-times gluings along
orthogonal facets of types A, B and C. Then the growth
function of D#,m,n is equal to [2,4,6,10]/Q#,m,n(t) where3
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Q#,m,n(t) = t18 − (4n + 6)t17 + (2n − m + 3)t16

+(3n − m + #+ 5)t15 − (n − 4m + 1)t14 − (n − 4m + 1)t13

+(8n − 4m + #+ 9)t12 + (5m − #)t11 + (10n − 5m + #+ 11)t10

−(2n − 6m + 2)t9 + (10n − 5m + #+ 11)t8 + (5m − #)t7

+(8n − 4m + #+ 9)t6 − (n − 4m + 1)t5 − (n − 4m + 1)t4

+(3n − m + #+ 5)t3 + (2n − m + 3)t2 − (4n + 6)t + 1

She showed that the zeros of Q#,m,n(t) are 2 reciprocal
pairs of positive real zeros and the others locating on
the unit circle. Hence Coxeter dominoes also have “2-
Salem” numbers as their growth rates.
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Theorem (Umemoto 2013)
For any n ≡ 1 mod 3, Denominator polynomials Qn,0,n(t)
and Q0,n,n(t) are irreducible. Hence these Coxeter domi-
noes have 2-Salem numbers as their growth rates.

Final reamrks
1. In general cocompact 4-dim hyp. Coxeter groups
have not 2-Salem numbers as their growth rates.

2. There are notions of j-Salem or j-Pisot numbers (due
to Samet and Kerada)3
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