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Shige

It is a great privilege for me to speak at the conference in honour
of Shigeyasu Kamiya on the occasion of his retirement.

| have known Shige for many years.

These are pictures of us
» At the 2007 conference for Alan Beardon's retirement
> In my home in Durham

> At the conference Shige organised in Okayama in 1998



Shimizu's lemma

Lemma (Shimizu 1963)
Let T and S be the following matrices in SL(2,R)

() (Y

Suppose ¢ # 0. If the group I = (T, S) is discrete then |ct| > 1.



Shimizu's lemma

Lemma (Shimizu 1963)
Let T and S be the following matrices in SL(2,R)
1t a b
=(o1) s=(24)
Suppose ¢ # 0. If the group I = (T, S) is discrete then |ct| > 1.

The proof has three steps.
Step 1
Consider the sequence in [ defined by Sop = S and Sj1 = 5; Tijl.

Write Sj = <ij bej
J J

aj bj 1t dj fbj - 1—ajqt aft
g d)\0 1)\-¢ &) \ -t 1+agqt)

In particular ¢j11 = —cjzt

). Then 5j1 is given by



Proof of Shimizu's lemma continued

Step 2

From the sequence {S;} construct a dynamical system:

ci+1t] = |¢;t]? and so [¢jt] = |cot|* = |ct]?.

Find a condition that ensures we lie in a finite basin of attraction:
If |ct| = |cot| < 1 then |c;t|, and hence ¢;, tends to 0.

Moreover, since ¢ # 0 then ¢; # 0.



Proof of Shimizu's lemma continued

Step 2

From the sequence {S;} construct a dynamical system:

ci+1t] = |¢;t]? and so [¢jt] = |cot|* = |ct]?.

Find a condition that ensures we lie in a finite basin of attraction:
If |ct| = |cot| < 1 then |c;t|, and hence ¢;, tends to 0.

Moreover, since ¢ # 0 then ¢; # 0.

Step 3
We use cjt — 0 to show S; tends to T:
We have aj;1 — 1 = —ajcit = —(aj — 1)¢jt — ¢jt, so for j > 1:

|aj — 1] < |ao — 1| |cot|* + jleot|*
Hence a; tends to 1.

Using our expression for S; 1, this shows S; tends to T.
Since ¢; #0 then S; # T and [ = (T, S) is not discrete.

Hence if I is discrete, we must have |ct| > 1. O



Some hyperbolic geometry

» A matrix S in SL(2,R) acts on the upper half plane
as a Mabius transformation S(z) in PSL(2,R)

SE <i Z) corresponds to S(z) = az+h

cz+d

> S(z) is an isometry of the hyperbolic plane H® = H2
» A discrete subgroup I' of SL(2,R) acts

properly discontinuously on H2
» The quotient M = H2 /T is an orbifold.

» The matrix T corresponds to the Mobius transformation
T(z)=z+t.
This has (Euclidean) translation length /1 = |t|

» For u > 0 the horoball H, of height u at oo is
Hy={z=x+iy e H% : y > u}
A horoball at a point x € R is an open disc tangent to R at x

v



Isometric spheres

Let S(z) = (az + b)/(cz + d) € PSL(2,R) not fixing co
So ¢ # 0. The isometric sphere /(S) of S is the Euclidean

semi-circle with centre S~1(c0) = —d/c and radius rs = 1/|c|
Hu
u
1 Is) I(s)

—d/o=5 () a/c=5(c)
S sends the outside of /(S) to the inside of /(S71).



Isometric spheres

Let S(z) = (az + b)/(cz + d) € PSL(2,R) not fixing co
So ¢ # 0. The isometric sphere /(S) of S is the Euclidean

semi-circle with centre S~1(c0) = —d/c and radius rs = 1/|c
Hu
u
1 I(S) I(S™)

—d/o=5 () a/c=5(c)
S sends the outside of /(S) to the inside of /(S71).

S sends the horoball H, of height u centred at oo
to a horoball S(H,) of diameter 1/ulc|? at S(c0).

So if u>rs =1/|c| then H, and S(H,) are disjoint.



Geometric interpretation of Shimizu's lemma

Let I be a discrete subgroup of PSL(2,R) containing
T(z) =z + t where t > 0.

(1) If S is any element of ' not fixing oo

then the radius rs of the isometric sphere of S satisfies

rs < It

(Note this is an inequality between two Euclidean quantities)
Proof: rs = 1/|c|, {7 = |t| and Shimizu says |ct| > 1.

(2) Horoball H; of height u = t is precisely invariant under I
That is, for any S € T either S(H;) = H; or S(H;) N Hy = 0.

On the orbifold M = HZ, /T
C = H;/T« is a cusp neighbourhood of hyperbolic area 1.

([



The modular group

Shimizu's lemma is sharp for the modular group PSL(2,Z)
In this case, t =1 and S(z) = —1/z has rs = 1.

There is a cusp neighbourhood C which cannot be enlarged.
It has area is 1, which is large compared to the

area of H2 /PSL(2,Z), which is 7/3




Generalisations of Shimizu's lemma

>

Leutbecher 1967 Subgroups of PSL(2, C) = Isomg(H3)
containing a translation.

Wielenberg 1977 Subgroups of POg(n,1) = Isomg(HR)
containing a translation.

Kamiya 1983 Subgroups of PU(n, 1) = Isomg(H¢) or
PSp(n,1) = Isomg(Hf;) containing a vertical Heisenberg
translation.

Apanasov 1985, Ohtake 1985 Subgroups of Isom(Hg) with
n > 4 containing a screw parabolic map: there is no uniform
bound on radii of isometric spheres.

JRP 1992 Subgroups of PU(n, 1) containing a non-vertical
Heisenberg translation: there is no uniform bound on radii of
isometric spheres.

Waterman 1993 Subgroups of Isom(Hg) with n > 4
containing a screw parabolic map: radii of isometric spheres
bounded in terms of parabolic translation length at centres.



Jgrgensen’s inequality
Jorgensen 1976 If (T, S) subgroup of SL(2, C) discrete, then
elementary or [tr?(S) — 4| + [tr[S, T] — 2| > 1
(Same structure of proof as Shimizu's lemma).



Jgrgensen’s inequality
Jorgensen 1976 If (T, S) subgroup of SL(2, C) discrete, then
elementary or [tr?(S) — 4| + [tr[S, T] — 2| > 1
(Same structure of proof as Shimizu's lemma).
While working on basin of attraction part of this problem
Brooks & Matelski 1978/1979 produced
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Possibly the first picture of the Mandelbrot set



Shimizu's lemma for real hyperbolic space

A parabolic isometry T of Hy fixing oo acts on R as
T(x) = Ux + t where U € O(n—1), t e R" ! and Ut = t.
Let Ny = max{||(U— )x]| : [}x]| = 1}

The Euclidean translation length of T at x is

lr(x) = [ T(x) = xll = (U = Dx + tll = V/II(U = Dx[2 + [[¢]]2




Shimizu's lemma for real hyperbolic space

A parabolic isometry T of Hy fixing oo acts on R as
T(x) = Ux + t where U € O(n—1), t e R" ! and Ut = t.

Let Ny = max{|[(U — I)x|| : [Ix]| =1}
The Euclidean translation length of T at x is

lr(x) = [ T(x) = xll = (U = Dx + tll = V/II(U = Dx[2 + [[¢]]2

Theorem (Waterman 1993)

Let I' < Isom(Hg) be discrete and contain T(x) = Ux + t.

Suppose Ny < 1/4 and write K = %(1 + V1 —4Ny).

Let S € T not fixing oo have isometric sphere of radius rs.
=l

Then rg < s (OO;EKT(S(OO)).




Shimizu's lemma for real hyperbolic space

A parabolic isometry T of Hg fixing oo acts on R as
T(x) = Ux + t where U € O(n—1), t e R" ! and Ut = t.

Let Ny = max{[|(U — I)x|| : x| =1}
The Euclidean translation length of T at x is

Lr(x) = IT(x) = x|l = (U = Nx + t]l = V/II(U = Dx]? + [[£]]2

Theorem (Waterman 1993)

Let T < Isom(HR) be discrete and contain T(x) = Ux + t.
Suppose Ny < 1/4 and write K = %(1 + V1 —4Ny).
Let S € T not fixing oo have isometric sphere of radius rs.
07(S7(00))e7(5(0))
K2 i

> If U=1then Ny =0and K = 1.

Also, ¢7(x) = ||t]| and Waterman gives rs < ||t||

This is Wielenberg's version of Shimizu's lemma.

Then r2 <

We want to generalise this to other hyperbolic spaces



Hyperbolic spaces

Let F be one of
» the real numbers R,
» the complex numbers C,
» the quaternions H

Let ™! be the n + 1 dimensional F-vector space

(with scalars in [ acting on the right) equipped with

(-,+) Hermitian form (bilinear for R™!) of signature (n, 1)
Let V_ = {zeF™ . (z,2) < 0}

and Vo = {z € F"1 — {0} : (z,2) =0}

Let P: F™! — {0} — FP" be the (right) projection map.

Then Hg = PV_ and OHj = IPVp; metric on Hg is given by:
—4 (z,z) (dz,z)
2 9 )
ds” = T et <(z, dz) (dz,dz)
The hyperbolic spaces are H3, HZ, H together with HZ
where O are the octonions (see Chen & Greenberg 1974).




More about hyperbolic spaces

Let O(n,1), U(n,1), Sp(n,1) be the group preserving (-, )

when F = R, C, H respectively (acting on F™! on the left).

This group acts (projectively) by isometries on Hf

(For F = O there is no vector space 0!

but there is an analogous isometry group F4(_20) of H(%).

We will not consider this case here.)

We pass between matrix groups and isometries without comment.

An isometry S of a hyperbolic space H is

» loxodromic (or hyperbolic) if it has two fixed points, both on
OH
» parabolic if it has a unique fixed point, lying on OH
» elliptic if it fixes (at least) one point of H
There are finer classifications of these types.

We will mainly be interested in parabolic maps, which are:
Either (Heisenberg)-translations or screw parabolic maps.



Shimizu's lemma for other hyperbolic spaces

>

Kamiya 1983 Subgroups of SU(n, 1) or Sp(n,1) containing a
vertical Heisenberg translation.

Hersonsky-Paulin 1996 Subgroups of SU(n, 1) containing a
non-vertical Heisenberg translation (not given geometrically).
JRP 1997 Subgroups of SU(n, 1) containing a non-vertical
Heisenberg translation.

I. Kim & JRP 2003 Subgroups of Sp(n, 1) containing a
non-vertical Heisenberg translation.

Jiang & JRP 2003 Subgroups of SU(2, 1) containing a screw
parabolic map (not given geometrically).

D. Kim 2004 Subgroups of Sp(2, 1) containing (certain types
of) screw parabolic maps (not given geometrically).

Kamiya & JRP 2008 Subgroups of SU(2, 1) containing a
positively oriented screw parabolic map.

Cao & JRP 2014 Subgroups of SU(n, 1) or Sp(n, 1)
containing any parabolic map.



Other generalisations
The stable basin theorem

» Basmajian & Miner 1998 Stable basin theorem — stronger
hypothesis than Shimizu/Jgrgensen. Includes version of
Shimizu's lemma for SU(2, 1)

» Kamiya 2000, Kamiya & JRP 2002 SBT for Heisenberg
translations follows from Shimizu’s lemma.

Generalisations of Jgrgensen's inequality:
» Jiang, Kamiya & JRP 2003 Jgrgensen'’s inequality for
subgroups of SU(2,1)
» Markham 2003 Jgrgensen's inequality for subgroups of
PSp(2,1) and (some) subgroups of Fy(_20)
» D. Kim 2004 Jgrgensen's inequality for subgroups of PSp(2,1)

» Cao & JRP 2011 Jgrgensen's inequality for subgroups of
SU(n, 1) or Sp(n, 1).



Heisenberg groups and the boundary of hyperbolic spaces

We can identify

» OHZ with R"! U {oc},

> 8H[é with 9,1 U {OO},

> aHﬁI with 9g,-1 U {OO}
Mop_1 = C"™ 1 x R is the (2n — 1)-dimensional Heisenberg group,
and My,_1 = H 1 x R3=H""! x SH is the
(4n — 1)-dimensional generalised Heisenberg group
both with the group law
(C1,v1) - (G2, v2) = (C1 + Cosvi + va +23(83¢1))
(where z* is the conjugate transpose)
We will write 91 for both cases

The Cygan metric on 91 is the metric associated to the norm

1/4
1S I = (ISI* + [vI?)
It generalises the Euclidean metric on R"~! for Hg and
the square root of the Euclidean metric on R for H} ~ HZ.



Action of PU(n,1) and PSp(n,1) on N

We write an element S of PU(n, 1) or PSp(n, 1) and its inverse as

a ~v* b d B* b
S=la A B|, St=[|6 A 4
c o0 d c of 3

where a,b,c,d € F, o, 3,7, € F"1, Ac U(n—1) or Sp(n—1).
If ¢ =0 then S fixes oo; if ¢ # 0 we define isometric spheres.

The isometric sphere /(S) of S is the Cygan sphere of radius
rs = 1/|c|'/? with centre S~1(c0) = (6c71/v/2,3(de 1)) € M.
S sends the outside of /(S) to the inside of I(S_fl).

Pictures of Cygan spheres and hemispheres by Anton Lukyanenko.



Heisenberg translations in PU(n, 1) and PSp(n, 1)

The simplest parabolic maps in PU(n, 1) and PSp(n, 1) are
Heisenberg translations:

The (generalised) Heisenberg group 91 acts on itself by left
translation: T(; ) : (¢,v) — (C+7, v+t +23(¢*7))

As a matrix in PU(n, 1) or PSp(n, 1) it is

1 /21" |72+t
Ton=T=[0 I V21

0 0 1
Note: t in top right hand entry is pure imaginary
so is it in complex case.

A Heisenberg translation by (0, t) is called a vertical translation
and lies in the centre of 91.

The Cygan translation length of T at (¢,v) € 9N is
£r((¢,v)) = (I7ll* + e+ 43(¢™n)R) 2.



Shimizu's lemma for Heisenberg translations

Theorem (JRP 1997, Kim-JRP 2003)
Let T < PU(n,1) or PSp(n,1) be discrete and contain
Heisenberg translation T by (7,t).

Let S €T not fixing oo have isometric sphere of radius rs.
Then r2 < (7(S7(00))l7(5(0)) + 47>

» When 7 = 0 then (1(((, v)) = [t[M/? get r2 < (2 = |t
(that is |ct| > 1), due to Kamiya 1983.



Shimizu's lemma for Heisenberg translations

Theorem (JRP 1997, Kim-JRP 2003)
Let T < PU(n,1) or PSp(n,1) be discrete and contain
Heisenberg translation T by (7,t).
Let S €T not fixing oo have isometric sphere of radius rs.
Then r2 < (7(S7(00))l7(5(0)) + 47>
» When 7 = 0 then (1(((, v)) = [t[M/? get r2 < (2 = |t
(that is |ct| > 1), due to Kamiya 1983.
Structure of proof same as for classical Shimizu:
> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system
» Deduce S; tends to T.



Shimizu's lemma for Heisenberg translations

Theorem (JRP 1997, Kim-JRP 2003)
Let T < PU(n,1) or PSp(n,1) be discrete and contain
Heisenberg translation T by (7,t).
Let S €T not fixing oo have isometric sphere of radius rs.
Then r2 < (7(S7(00))l7(5(0)) + 47>
» When 7 = 0 then (1(((, v)) = [t[M/? get r2 < (2 = |t
(that is |ct| > 1), due to Kamiya 1983.
Structure of proof same as for classical Shimizu:
> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system
» Deduce S; tends to T.
The variables in the dynamical system are:
X; = (max{er(S;1(00)). r(S(00))}/15)", Vi = (Irll/rs)’
They satisfy )<j+1 < Xj +4Y;, Y < XY



Shimizu's lemma for Heisenberg translations

Theorem (JRP 1997, Kim-JRP 2003)
Let T < PU(n,1) or PSp(n,1) be discrete and contain
Heisenberg translation T by (7,t).
Let S €T not fixing oo have isometric sphere of radius rs.
Then r2 < (7(S7(00))l7(5(0)) + 47>
» When 7 = 0 then (1(((, v)) = [t[M/? get r2 < (2 = |t
(that is |ct| > 1), due to Kamiya 1983.
Structure of proof same as for classical Shimizu:
> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system
» Deduce S; tends to T.
The variables in the dynamical system are:
X; = (max{er(S;%(00)), £r(Si(00))}/rs)*,  Yi=(lI7ll/rs)’
They satisfy )<j+1 < Xj +4Y;, Y < XY
If bound on rs is not true then we show XJ +4Y; <1
and Xj, Yjtendto 0 as j — oo



Invariant horoballs

We can give Hp the structure 91 x R
A horoball H, of height u at oo is 9N X (u, 00).

» For vertical translations by (0, t)
the horoball H,;| is precisely invariant.
» For non-vertical translations by (7, t) with 7 # 0
there is a precisely invariant sub-horospherical region.
We will not go into details about these.
> There is a sharp version of Shimizu's lemma for PU(2,1)
yielding a cusp neighbourhood of volume 1/4
This cusp neighbourhood is as maximal for
the Eisenstein-Picard lattice PU(2, 1; Z[l%‘/g]) and its sister
— which have covolume 72 /27



Positively oriented screw parabolic maps in PU(2, 1)

1 0 it
Consider T= [0 e 0| €PU(2,1)
0 0 1

T is positively oriented if tsin(f) > 0.
T actson Mz as T : (¢, v) — (¢, v +1)
Its Cygan translation length (+((C, v)) at (¢, v) is:

; L 11/2 ; : 1/4
[21P(e — 1)+ it[ /% = (I¢[#e™ - 1|* + (2I¢ P sin(8) + £)2) "/
We have the following version of Shimizu's lemma for groups with
positively oriented screw parabolic maps (cf Waterman's theorem):

Theorem (Kamiya-JRP 2008)
Let I < PU(2,1) be discrete and contain positively oriented T.
Suppose e — 1| < 1/4 and write K = 3(1+ /1 — 4]e/® — 1]).
Let S € T not fixing oo have isometric sphere of radius rs.
7(571(00))e7(5(0))

K2 '
> Note that if # = 0 we obtain Kamiya's 1983 result.

Then r2 <




General parabolic maps in PU(n, 1)

» A general parabolic map in PU(n, 1) has the form
1 V21" —|7||2 +it
T=10 U V2r
0 0 1
where U € U(n — 1) with Ur =7
(soif n=2and U # [ then 7 =0).

v

If U+ | then this is a screw parabolic map.

v

T acts on 91,1 as

T:((v)— (UC+T1,v+t+23(¢*T))

Its Cygan translation length at ((, v) is

er((6,v) = (I(U=D¢HT | +[t+23((¢* —7*)(UC+7)) )

v

1/4

v

If U =1 then this map is a Heisenberg translation.
Action on 91,1 and Cygan translation length are as before.



General parabolic maps in PSp(n, 1)

Cao-JRP 2014
A general parabolic map in PSp(n, 1) has the form
po V2t (=7l + t)u)
T=10 U \@T,u
0 0 o
where U € Sp(n—1) and p € H, |p]| =1
Ur=ur, U't=ar, pr A7 if 7#0 and p # +1,

with Ur=r, UTt=1 if 70 and p = +£1,
ut # to if 7=0and p # £1,
t#0 if T=0and p=+1.

This acts on 94,1 as
T : (¢, v) — (UCE + 7, uvE + t + 23(u¢*ir))

Its Cygan translation length /+((¢, v)) is
(IUCE = ¢+ 7lI* + v — v + £ +23((¢* — 7*)(UCE + 7))

1/4



Vertical projection

Before discussing the generalised Shimizu's lemma, there is one
more ingredient.

» Define vertical projection
M:N,_ 1= Cr1xR— Cn1
N:Ngp_1 =H"1 xRS — H"!
by I : ({,v) — C.

» If T is one of the parabolic maps defined above, its vertical
projection acts on C"~! or H"~! respectively as
Tn: ¢ — Ul + 7 (where n = 1 in the complex case)

» The Euclidean translation length of the vertical projection of
Tat ¢eF"tis (3(¢) = | UGE — ¢ + 7]l



The generalised Shimizu's lemma

Let T be a general parabolic map, U, u as before.
Define Ny, = max{||UCz —¢|| - [|<] =1}
Ny = max{|[uCE = ¢l = [I<IF =1} = [S(w)]



The generalised Shimizu's lemma

Let T be a general parabolic map, U, u as before.

Define Ny, = max{]|UCE—¢|| : [I¢] = 1}

N, = max{||u¢i = €| = [I<]] = 1} = [S(w)]

Theorem (Cao-JRP 2014)

Let ' € PSp(n,1) be discrete and contain parabolic T as above.

Suppose N, <1/4 and Ny, < (3—2,/2+ N,)/2

Define K = 3 (1+2Nu, + /1 — 12Ny, +4N3 , — 4N,

Let S €T not fixing oo have isometric sphere of radius rs. Then
£r(SH(0))Er(S()) |, 43NS (00))R(NS())

K K(K — 2Ny )

r_%g




The generalised Shimizu's lemma

Let T be a general parabolic map, U, u as before.

Define Ny, = max{||U¢z — ¢l : [I¢]l =1}

N, = max{||u¢i = €| = [I<]] = 1} = [S(w)]

Theorem (Cao-JRP 2014)

Let ' € PSp(n,1) be discrete and contain parabolic T as above.

Suppose N, <1/4 and Ny, < (3 —2y/2+ N,)/2

Define K = (1 + 2Ny, + 112Ny, + 403, — 4N,

Let S €T not fixing oo have isometric sphere of radius rs. Then
£r(SH(0))Er(S()) |, 43NS (00))R(NS())

K K(K — 2Ny )

2
rSS

» When ;. =1 (including case of PU(n, 1)) hypotheses simplify:
Ny = Ny1 < (V2 —1)?/2 and
K = %(1+2NU+ \/1 - 12NU+4N5)
The conclusion remains the same.

» When U =/, u = 1 get version for Heisenberg translations.




Sketch of the proof when U # [ (so Ny, # 0)

> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system
» Deduce S; tends to T.



Sketch of the proof when U # [ (so Ny, # 0)

> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system

» Deduce S; tends to T.

The variables in the dynamical system are:2
X = (max{£7(5;7}(00)), £7(Sj(00))} /1s;) ",

_ 2
Y; = (max{£3(NS;(0)), £3(NS;(c0))} /rs;)
They satisfy recursion inequalities:

Xji1 < XF+4Y;+ 2Ny + N Vi < XY +2N0, Y+ N3,



Sketch of the proof when U # [ (so Ny, # 0)

> Consider the sequence So = S, Sj11 = S; TSJ-_1
» Show in finite basin of attraction of dynamical system
» Deduce S; tends to T.

The variables in the dynamical system are:
X; = (max{tr(S7(00)), € (Sj(00)}/rs)",
Vi = (max{¢}(N1S; (o)), (}(NSj(00))} /rs;)°
They satisfy recursion inequalities:
Xjt1 < ij +4Y; + 2Ny + Ny, Vg < XY+ 2Ny, Y + lej,u
If the bound on rs in the theorem is not true then:
» X;+4Y;/(K—-2Ny,) < K
» for large enough j we have
X; < K—=2Ny, and Y; < (K = 2Ny, )Ny /2
» for all € > 0 there exists J. so for all j > J.:
Xi<1l—=K+eand YV;<(1-K)Ny,/2+¢



Where do we go from here?

» For screw parabolic maps T where U has infinite order,
the asymptotic growth (in terms of distance from axis)
of bounds on rg are worse than in examples.

» Erlandsson & Zakeri: In PO(4,1) use same bounds for
carefully chosen powers of T to improve asymptotics.
‘Carefully chosen’ means use Diophantine approximation of
rotation angle.

» Erlandsson-Zakeri's idea also works in PU(2,1).

> Try to generalise these results to Fy(_20)



