On the spaces of equivariant maps between real algebraic varieties

電気通信大学 山口耕平 (Kohhei Yamaguchi)*

概 要

Recently the author notices that the stability dimension obtained in [1] and [12] can be improved by using the truncated simplicial resolutions invented by J. Mostovoy [15]. The purpose of this note is to announce these improvements.

1 Introduction.

We consider the homotopy types of spaces of algebraic (rational) maps from real projective space $\mathbb{R}P^m$ into the complex projective space $\mathbb{C}P^m$ for $2 \leq m \leq 2n$. It is known in [1] that the inclusion of the space of rational (or regular) maps into the space of all continuous maps is a homotopy equivalence. These results combined with those of [1] can be formulated as a single statement about $\mathbb{Z}/2$ -equivariant homotopy equivalence between these spaces, where the $\mathbb{Z}/2$ -action is induced by the complex conjugation. This is also one of the generalizations of a theorem of [9], and it is already published in [12]. Recently the author notices that the stability dimensions given in [1] and [12] can be improved by using the truncated simplicial resolutions invented by J. Mostovoy [15]. In this note we shall announce about these improvements (cf. [2]).

^{*}Department of Mathematics, University of Electro-Communications; Chofugaoka Chofu, Tokyo 182-8585, Japan (kohhei@im.uec.ac.jp)

1.1 Definitions and notations.

Let \mathbb{K} denote one of the fields \mathbb{R} or \mathbb{C} of real or complex numbers and let $d(\mathbb{K}) = \dim_{\mathbb{R}} \mathbb{K} = 1$ if $\mathbb{K} = \mathbb{R}$ and 2 if $\mathbb{K} = \mathbb{C}$. Let m and nbe positive integers such that $1 \leq m < d(\mathbb{K}) \cdot (n+1) - 1$. We choose $\mathbf{e}_m^{\mathbb{K}} = [1:0:\cdots:0] \in \mathbb{K}P^m$ as the base point of $\mathbb{K}P^n$. For $d(\mathbb{K}) \leq m < d(\mathbb{K}) \cdot (n+1) - 1$, we denote by $\operatorname{Map}^*(\mathbb{R}P^m, \mathbb{K}P^n)$ the space consisting of all based maps $f: (\mathbb{R}P^m, \mathbf{e}_m^{\mathbb{R}}) \to (\mathbb{K}P^n, \mathbf{e}_n^{\mathbb{K}})$, and by $\operatorname{Map}^*_{\epsilon}(\mathbb{R}P^m, \mathbb{K}P^n)$, where $\epsilon \in \mathbb{Z}/2 = \{0, 1\} = \pi_0(\operatorname{Map}^*(\mathbb{R}P^m, \mathbb{K}P^n))$, the corresponding path component of $\operatorname{Map}^*(\mathbb{R}P^m, \mathbb{K}P^n)$. Similarly, let $\operatorname{Map}(\mathbb{R}P^m, \mathbb{K}P^n)$ denote the space of all free maps $f: \mathbb{R}P^m \to \mathbb{K}P^n$ and $\operatorname{Map}_{\epsilon}(\mathbb{R}P^m, \mathbb{K}P^n)$ the corresponding path component of $\operatorname{Map}(\mathbb{R}P^m, \mathbb{K}P^n)$.

We shall use the symbols z_i when we refer to complex valued coordinates or variables or when we refer to complex and real valued ones at the same time while the notation x_i will be restricted to the purely real case.

A map $f : \mathbb{R}P^m \to \mathbb{K}P^n$ is called a *algebraic map of the degree* d if it can be represented as a rational map of the form $f = [f_0 : \cdots : f_n]$ such that $f_0, \cdots, f_n \in \mathbb{K}[z_0, \cdots, z_m]$ are homogeneous polynomials of the same degree d with no common *real* roots except $\mathbf{0}_{m+1} = (0, \cdots, 0) \in \mathbb{R}^{m+1}$.

We denote by $\operatorname{Alg}_d(\mathbb{R}P^m, \mathbb{K}P^n)$ (resp. $\operatorname{Alg}_d^*(\mathbb{R}P^m, \mathbb{K}P^n)$) the space consisting of all (resp. based) algebraic maps $f : \mathbb{R}P^m \to \mathbb{K}P^n$ of degree d. It is easy to see that there are inclusions $\operatorname{Alg}_d(\mathbb{R}P^m, \mathbb{K}P^n) \subset \operatorname{Map}_{[d]_2}(\mathbb{R}P^m, \mathbb{K}P^n)$ and $\operatorname{Alg}_d^*(\mathbb{R}P^m, \mathbb{K}P^n) \subset \operatorname{Map}_{[d]_2}(\mathbb{R}P^m, \mathbb{K}P^n)$, where $[d]_2 \in \mathbb{Z}/2 = \{0, 1\}$ denotes the integer $d \mod 2$. Let $A_d(m, n)(\mathbb{K})$ denote the space consisting of all (n + 1)-tuples $(f_0, \cdots, f_n) \in \mathbb{K}[z_0, \cdots, z_m]^{n+1}$ of homogeneous polynomials of degree d with coefficients in \mathbb{K} and without non-trivial common real roots (but possibly with non-trivial common complex ones).

Let $A_d^{\mathbb{K}}(m,n) \subset A_d(m,n)(\mathbb{K})$ be the subspace consisting of (n + 1)tuples $(f_0, \dots, f_n) \in A_d(m,n)(\mathbb{K})$ such that the coefficient of z_0^d in f_0 is 1 and 0 in the other f_k 's $(k \neq 0)$. Then there is a natural surjective projection map

$$\Psi_d^{\mathbb{K}} : A_d^{\mathbb{K}}(m, n) \to \operatorname{Alg}_d^*(\mathbb{R}\mathrm{P}^m, \mathbb{K}\mathrm{P}^n).$$

For $m \geq 2$ and $g \in \operatorname{Alg}_d^*(\mathbb{R}P^{m-1}, \mathbb{K}P^n)$ a fixed algebraic map, we denote

by $\operatorname{Alg}_d^{\mathbb{K}}(m,n;g)$ and F(m,n;g) the spaces defined by

$$\begin{cases} \operatorname{Alg}_{d}^{\mathbb{K}}(m,n;g) &= \{f \in \operatorname{Alg}_{d}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{K}\mathrm{P}^{n}): f | \mathbb{R}\mathrm{P}^{m-1} = g\}, \\ F^{\mathbb{K}}(m,n;g) &= \{f \in \operatorname{Map}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{K}\mathrm{P}^{n}): f | \mathbb{R}\mathrm{P}^{m-1} = g\}. \end{cases}$$

Note that there is a homotopy equivalence $F^{\mathbb{K}}(m,n;g) \simeq \Omega^m \mathbb{K} \mathbb{P}^n$. Let $A_d^{\mathbb{K}}(m,n;g) \subset A_d^{\mathbb{K}}(m,n)$ denote the subspace given by

$$A_d^{\mathbb{K}}(m,n;g) = (\Psi_d^{\mathbb{K}})^{-1}(\operatorname{Alg}_d^{\mathbb{K}}(m,n;g)).$$

Observe that if an algebraic map $f \in \operatorname{Alg}_d^*(\mathbb{RP}^m, \mathbb{KP}^n)$ can be represented as $f = [f_0 : \cdots : f_n]$ for some $(f_0, \cdots, f_n) \in A_d^{\mathbb{K}}(m, n)$ then the same map can also be represented as $f = [\tilde{g}_m f_0 : \cdots : \tilde{g}_m f_n]$, where $\tilde{g}_m = \sum_{k=0}^m z_k^2$. So there is an inclusion

$$\operatorname{Alg}_{d}^{*}(\mathbb{R}P^{m},\mathbb{K}P^{n})\subset \operatorname{Alg}_{d+2}^{*}(\mathbb{R}P^{m},\mathbb{K}P^{n})$$

and we can define the stabilization map $s_d : A_d^{\mathbb{K}}(m,n) \to A_{d+2}^{\mathbb{K}}(m,n)$ by $s_d(f_0, \cdots, f_n) = (\tilde{g}_m f_0, \cdots, \tilde{g}_m f_n).$

It is easy to see that there is a commutative diagram

$$\begin{array}{ccc} A_{d}^{\mathbb{K}}(m,n) & \xrightarrow{s_{d}} & A_{d+2}^{\mathbb{K}}(m,n) \\ & \Psi_{d}^{\mathbb{K}} & & \Psi_{d+2}^{\mathbb{K}} \\ & & & & & \\ \mathrm{Alg}_{d}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{K}\mathrm{P}^{n}) & \xrightarrow{\subset} & \mathrm{Alg}_{d+2}^{*}(\mathbb{R}\mathrm{P}^{m},\mathbb{K}\mathrm{P}^{n}) \end{array}$$

A map $f \in \operatorname{Alg}_d^*(\mathbb{R}P^m, \mathbb{K}P^n)$ is called an algebraic map of *minimal degree* d if $f \in \operatorname{Alg}_d^*(\mathbb{R}P^m, \mathbb{K}P^n) \setminus \operatorname{Alg}_{d-2}^*(\mathbb{R}P^m, \mathbb{K}P^n)$. It is easy to see that if $g \in \operatorname{Alg}_d^*(\mathbb{R}P^{m-1}, \mathbb{K}P^n)$ is an algebraic map of minimal degree d, then the restriction

$$\Psi_d^{\mathbb{K}} | A_d^{\mathbb{K}}(m,n;g) : A_d^{\mathbb{K}}(m,n;g) \xrightarrow{\cong} \operatorname{Alg}_d^{\mathbb{K}}(m,n;g)$$

is a homeomorphism. Let

$$\begin{cases} i_{d,\mathbb{K}} : \operatorname{Alg}_{d}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{K}\mathrm{P}^{n}) \xrightarrow{\subset} \operatorname{Map}_{[d]_{2}}^{*}(\mathbb{R}\mathrm{P}^{m}, \mathbb{K}\mathrm{P}^{n}) \\ i_{d,\mathbb{K}}' : \operatorname{Alg}_{d}^{\mathbb{K}}(m, n; g) \xrightarrow{\subset} F(m, n; g) \simeq \Omega^{m} \mathbb{K}\mathrm{P}^{n} \end{cases}$$

denote the inclusions and let

$$i_d^{\mathbb{K}} = i_{d,\mathbb{K}} \circ \Psi_d^{\mathbb{K}} : A_d^{\mathbb{K}}(m,n) \to \operatorname{Map}_{[d]_2}^*(\mathbb{R}\mathrm{P}^m,\mathbb{K}\mathrm{P}^n).$$

be the natural projection.

1.2 The case m = 1.

First, recall the following old result for the case m = 1.

Theorem 1.1 ([10], [20] (cf. [13])). Let $n \ge 2$ and $d \ge 1$ be integers.

(i) If K = R and m = 1, the map i^R_d : A^R_d(1, n) → Map^{*}_{[d]2}(RP¹, RPⁿ) ≃ ΩSⁿ is a homotopy equivalence up to dimension D₁(d, n), where D₁(d, n) denotes the integer given by D₁(d, n) = (d+1)(n-1) - 1. Moreover, if n ≥ 3 or n = 2 with d ≡ 1 (mod 2), there is a homotopy equivalence A^R_d ≃ J_d(ΩSⁿ), where J_d(ΩSⁿ) denotes the d-th stage James filtration of ΩSⁿ given by

$$J_d(\Omega S^n) = S^{n-1} \cup e^{2(n-1)} \cup e^{3(n-1)} \cup \dots \cup e^{d(n-1)} \subset \Omega S^n.$$

(ii) If $\mathbb{K} = \mathbb{C}$ and m = 1, the map $i_d^{\mathbb{C}} : A_d^{\mathbb{C}}(1, n) \to \Omega S^{2n+1}$ is a homotopy equivalence up to dimension $D_1(d, 2n+1) = 2n(d+1) - 1$ and there is a homotopy equivalence $A_d^{\mathbb{C}}(1, n) \simeq J_d(\Omega S^{2n+1})$.

Remark. (i) A map $f : X \to Y$ is called a homotopy (resp. a homology) equivalence up to dimension D if $f_* : \pi_k(X) \to \pi_k(Y)$ (resp. $f_* :$ $H_k(X,\mathbb{Z}) \to H_k(Y,\mathbb{Z})$) is an isomorphism for any k < D and an epimorphism for k = D. Similarly, it is called a homotopy (resp. a homology) equivalence through dimension D if $f_* : \pi_k(X) \to \pi_k(Y)$ (resp. $f_* : H_k(X,\mathbb{Z}) \to H_k(Y,\mathbb{Z})$) is an isomorphism for any $k \leq D$.

(ii) Let G be a finite group and let $f : X \to Y$ be a G-equivariant map. Then a map $f : X \to Y$ is called a G-equivariant homotopy (resp. homology) equivalence up to dimension D if for each subgroup $H \subset G$ the induced homomorphism $f_*^H : \pi_k(X^H) \to \pi_k(Y^H)$ (resp. $f_*^H : H_k(X^H, \mathbb{Z}) \to H_k(Y^H, \mathbb{Z})$) is an isomorphism for any k < D and an epimorphism for k = D.

Similarly, it is called a *G*-equivariant homotopy (resp. homology) equivalence through dimension *D* if for each subgroup $H \subset G$ the induced homomorphism $f_*^H : \pi_k(X^H) \xrightarrow{\cong} \pi_k(Y^H)$ (resp. $f_*^H : H_k(X^H, \mathbb{Z}) \xrightarrow{\cong} H_k(Y^H, \mathbb{Z})$) is an isomorphism for any $k \leq D$. The complex conjugation on \mathbb{C} naturally induces the $\mathbb{Z}/2$ -action on $A_d^{\mathbb{C}}(m,n)$ and S^{2n+1} , where we identify S^{2n+1} with the space

$$S^{2n+1} = \{(w_0, \cdots, w_n) \in \mathbb{C}^{n+1} : \sum_{k=0}^n |w_k|^2 = 1\}.$$

It is easy to see that $A_d^{\mathbb{C}}(m,n)^{\mathbb{Z}/2} = A_d^{\mathbb{R}}(m,n)$ and $(i_d^{\mathbb{C}})^{\mathbb{Z}/2} = i_d^{\mathbb{R}}$. Hence, we also have:

Corollary 1.2 ([10]). If $n \geq 2$ and $d \geq 1$ are integers, the map $i_d^{\mathbb{C}}$: $A_d^{\mathbb{C}}(1,n) \to \Omega S^{2n+1}$ is a $\mathbb{Z}/2$ -equivariant homotopy equivalence up to dimension $D_1(d,n)$.

2 The case $m \ge 2$.

2.1 The improvements of the stability dimensions.

For a space X, let F(X, r) denote the configuration space of distinct r points in X given by $F(X, r) = \{(x_1, \dots, x_r) \in X^r : x_i \neq x_j \text{ if } i \neq j\}$. The symmetric group S_r of r letters acts on F(X, r) freely by permuting coordinates. Let $C_r(X)$ be the configuration space of unordered r-distinct points in X given by the orbit space $C_r(X) = F(X, r)/S_r$.

It is known ([8], [18]) that there are the stable homotopy equivalence and the isomorphism of abelian groups

$$\begin{cases} \Omega^m S^{m+l} \simeq_s \bigvee_{r=1}^{\infty} D_r(\mathbb{R}^m; S^l) & \text{(stable homotopy equivalence)} \\ H_k(D_r(\mathbb{R}^m, S^l), \mathbb{Z}) \cong H_{k-rl}(C_r(\mathbb{R}^m), (\pm \mathbb{Z})^{\otimes r}) & (k, l \ge 1), \end{cases}$$

where we set $\bigwedge^r X = X \land \cdots \land X$ (*r* times), $X_+ = X \cup \{*\}$ (* is the disjoint base point), and $D_r(\mathbb{R}^m, S^l) = F(\mathbb{R}^m, r)_+ \land_{S_r} (\bigwedge^r S^l)$.

Let $G^M_{m,N;k}$ and $D_{\mathbb{K}}(d;m,n)$ be the abelian group and the positive in-

teger defined by

$$\begin{cases} G_{m,N;k}^{M} = \bigoplus_{r=1}^{M} H_{k-(N-m)r}(C_{r}(\mathbb{R}^{m}), (\pm \mathbb{Z})^{\otimes (N-m)}), \\ D_{\mathbb{K}}(d;m,n) = \begin{cases} (n-m)\left(\lfloor \frac{d+1}{2} \rfloor + 1\right) - 1 & \text{if } \mathbb{K} = \mathbb{R}, \ d \leq 3, \\ (n-m)d-2 & \text{if } \mathbb{K} = \mathbb{R}, \ d \geq 4, \\ (2n-m+1)\left(\lfloor \frac{d+1}{2} \rfloor + 1\right) - 1 & \text{if } \mathbb{K} = \mathbb{C}, \ d \leq 3, \\ (2n-m+1)d-2 & \text{if } \mathbb{K} = \mathbb{C}, \ d \geq 4, \end{cases} \end{cases}$$

where $\lfloor x \rfloor$ denotes the integer part of a real number x. Note that there is an isomorphism $H_k(\Omega^m S^{m+l}, \mathbb{Z}) \cong G_{m,m+l;k}^{\infty}$ for any $k \ge 1$.

Then we have the following results.

Theorem 2.1 (cf. [1]). Let $2 \leq m < n$ and let $g \in \operatorname{Alg}_d^*(\mathbb{R}P^{m-1}, \mathbb{R}P^n)$ be an algebraic map of minimal degree d.

- (i) The inclusion $i'_{d,\mathbb{R}}$: $\operatorname{Alg}_{d}^{\mathbb{R}}(m,n;g) \to F^{\mathbb{R}}(m,n;g) \simeq \Omega^{m}S^{n}$ is a homotopy equivalence through dimension $D_{\mathbb{R}}(d;m,n)$ if $m+2 \leq n$ and a homology equivalence through dimension $D_{\mathbb{R}}(d;m,n)$ if m+1=n.
- (ii) For any $k \geq 1$, $H_k(\operatorname{Alg}_d^{\mathbb{R}}(m,n;g),\mathbb{Z})$ contains the subgroup $G_{m,n;k}^d$ as a direct summand. Moreover, the induced homomorphism $i'_{d,\mathbb{R}*}$: $H_k(\operatorname{Alg}_d^{\mathbb{R}}(m,n;g),\mathbb{Z}) \to H_k(\Omega^m S^n,\mathbb{Z})$ is an epimorphism for any $k \leq (n-m)(d+1)-1$.

Theorem 2.2 (cf. [1]). If $2 \le m < n$ are positive integers,

$$i_d^{\mathbb{R}} : A_d^{\mathbb{R}}(m,n) \to \operatorname{Map}_{[d]_2}^*(\mathbb{R}\mathrm{P}^m,\mathbb{R}\mathrm{P}^n)$$

is a homotopy equivalence through dimension $D_{\mathbb{R}}(d; m, n)$ if $m + 2 \leq n$ and a homology equivalence through dimension $D_{\mathbb{R}}(d; m, n)$ if m + 1 = n.

Theorem 2.3 (cf. [12]). Let $2 \le m \le 2n$, and let $g \in \operatorname{Alg}_d^*(\mathbb{R}P^{m-1}, \mathbb{C}P^n)$ be an algebraic map of minimal degree d.

(i) The inclusion $i'_{d,\mathbb{C}}$: $\operatorname{Alg}_{d}^{\mathbb{C}}(m,n;g) \to F^{\mathbb{C}}(m,n;g) \simeq \Omega^{m}S^{2n+1}$ is a homotopy equivalence through dimension $D_{\mathbb{C}}(d;m,n)$ if m < 2n and a homology equivalence through dimension $D_{\mathbb{C}}(d;m,n)$ if m = 2n. (ii) For any $k \ge 1$, $H_k(\operatorname{Alg}_d^{\mathbb{C}}(m, n; g), \mathbb{Z})$ contains the subgroup $G_{m,2n+1;k}^d$ as a direct summand. Moreover, the induced homomorphism $i'_{d,\mathbb{C}*}$: $H_k(\operatorname{Alg}_d^{\mathbb{C}}(m, n; g), \mathbb{Z}) \to H_k(\Omega^m S^{2n+1}, \mathbb{Z})$ is an epimorphism for any $k \le (2n - m + 1)(d + 1) - 1$.

Theorem 2.4 (cf. [12]). If $2 \le m \le 2n$ are positive integers,

$$i_d^{\mathbb{C}} : A_d^{\mathbb{C}}(m, n) \to \operatorname{Map}^*_{[d]_2}(\mathbb{R}\mathrm{P}^m, \mathbb{C}\mathrm{P}^n)$$

is a homotopy equivalence through dimension $D_{\mathbb{C}}(d; m, n)$ if m < 2n and a homology equivalence through dimension $D_{\mathbb{C}}(d; m, n)$ if m = 2n.

Note that the complex conjugation on \mathbb{C} naturally induces $\mathbb{Z}/2$ -actions on the spaces $\operatorname{Alg}_d^{\mathbb{C}}(m,n;g)$ and $A_d^{\mathbb{C}}(m,n)$ as before. In the same way it also induces a $\mathbb{Z}/2$ -action on \mathbb{CP}^n and this action extends to actions on the spaces $\operatorname{Map}^*(\mathbb{RP}^m, S^{2n+1})$ and $\operatorname{Map}_{\epsilon}^*(\mathbb{RP}^m, \mathbb{CP}^n)$, where we identify $S^{2n+1} = \{(w_0, \cdots, w_n) \in \mathbb{C}^{n+1} : \sum_{k=0}^n |w_k|^2 = 1\}$ and regard \mathbb{RP}^m as a $\mathbb{Z}/2$ -space with the trivial $\mathbb{Z}/2$ -action.

Corollary 2.5 (cf. [12]). Let $2 \le m \le 2n$, $d \ge 1$ be positive integers and $g \in \operatorname{Alg}_d^{\mathbb{C}}(\mathbb{R}P^{m-1}, \mathbb{C}P^n)$ be a fixed algebraic map of the minimal degree d.

- (i) If m < 2n, the inclusion map $i'_{d,\mathbb{C}} : \operatorname{Alg}_d^{\mathbb{C}}(m,n;g) \to F^{\mathbb{C}}(m,n;g) \simeq \Omega^m S^{2n+1}$ is a $\mathbb{Z}/2$ -equivariant homotopy equivalence through dimension $D_{\mathbb{R}}(d;m,n)$.
- (ii) If m = 2n, the above inclusion map i'_{d,C} is and a Z/2-equivariant homology equivalence through dimension D_ℝ(d; m, n).
- (iii) The map $i_d^{\mathbb{C}} : A_d^{\mathbb{C}}(m,n) \to \operatorname{Map}_{[d]_2}^*(\mathbb{R}P^m, \mathbb{C}P^n)$ is a $\mathbb{Z}/2$ -equivariant homotopy equivalence through dimension $D_{\mathbb{R}}(d;m,n)$ if m < 2n and $a \mathbb{Z}/2$ -equivariant homology equivalence through the same dimension $D_{\mathbb{R}}(d;m,n)$ if m = 2n.

2.2 Conjectures.

Finally we report several related questions.

Conjecture 2.6. Is the projection $\Psi_d^{\mathbb{K}} : A_d^{\mathbb{K}}(m,n) \to \operatorname{Alg}_d^*(\mathbb{R}P^m,\mathbb{K}P^n)$ a homotopy equivalence?

Let $\hat{D}_{\mathbb{K}}(d; m, n)$ denote the integer given by

$$\hat{D}_{\mathbb{K}}(d;m,n) = \begin{cases} (n-m)(d+1) - 1 & \text{if } \mathbb{K} = \mathbb{R}, \\ (2n-m+1)(d+1) - 1 & \text{if } \mathbb{K} = \mathbb{C}. \end{cases}$$

Conjecture 2.7. Is the map $i_d^{\mathbb{K}} : A_d^{\mathbb{K}}(m,n) \to \operatorname{Map}_{[d]_2}^*(\mathbb{R}\mathrm{P}^m,\mathbb{K}\mathrm{P}^n)$ a homotopy (or homology) equivalence up to dimension $\hat{D}_{\mathbb{K}}(d;m,n)$?

Remark. The above conjectures are correct if m = 1.

参考文献

- M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, to appear in Quart. J. Math.
- [2] M. Adamaszek, A. Kozlowski and K. Yamaguchi, in preparation.
- [3] M. F. Atiyah, Instantons in dimension two and four, Commn. Math. Phys. 93 (1984), 437-451.
- [4] C. P. Boyer, J. C. Hurtubise, R. J. Milgram, Stability Theorems for spaces of rational curves, Int. J. Math. 12 (2001), 223-262
- [5] C. P. Boyer, J. C. Hurtubise, B. M. Mann and R. J. Milgram, The topology of the space of rational maps into generalized flag manifolds, *Acta Math.* **173** (1994), 61–101.
- [6] J. Bochnak, M. Coste and M-F. Roy, Real Algebraic Geometry, A series of Modern Surveys in Math. 36, Springer-Verlag, 1991.
- [7] R. L. Cohen, J. D. S. Jones and G. B. Segal, Stability for holomorphic spheres and Morse Theory, Contemporary Math. **258** (2000), 87–106.
- [8] F. R. Cohen, T. J. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in Math., 533 Springer-Verlag, 1976.
- [9] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.

- [10] A. Kozlowski and K. Yamaguchi, Topology of complements of discriminants and resultants, J. Math. Soc. Japan 52 (2000), 949–959.
- [11] A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between complex projective spaces of degree one, Topology Appl. 132 (2003), 139–145.
- [12] A. Kozlowski and K. Yamaguchi, Spaces of algebraic maps from real projective spaces into complex projective spaces, Contemporary Math. 519 (2010), 145–164.
- [13] J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc. 353 (2001), 1959–1970.
- [14] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [15] J. Mostovoy, Truncated simplicial resolutions and spaces of rational maps, to appear in Quart. J. Math.
- [16] S. Sasao, The homotopy of Map(CP^m, CPⁿ), J. London Math. Soc. 8 (1974), 193–197.
- [17] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72.
- [18] V. P. Snaith, A stable decomposition of $\Omega^n S^n X$, J. London Math. Soc. 2 (1974), 577–583.
- [19] V. A. Vassiliev, Complements of Discriminants of Smooth Maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).
- [20] K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ. **39** (1999), 675–684.
- [21] K. Yamaguchi, The homotopy of spaces of maps between real projective spaces, J. Math. Soc. Japan 58 (2006), 1163–1184; *ibid.* 59 (2007), 1235–1237.