On the spaces of equivariant maps
between real algebraic varieties
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Recently the author notices that the stability dimension ob-
tained in [1] and [12] can be improved by using the truncated
simplicial resolutions invented by J. Mostovoy [15]. The purpose
of this note is to announce these improvements.

1 Introduction.

We consider the homotopy types of spaces of algebraic (rational) maps
from real projective space RP™ into the complex projective space CP™
for 2 < m < 2n. Tt is known in [1] that the inclusion of the space of ratio-
nal (or regular) maps into the space of all continuous maps is a homotopy
equivalence. These results combined with those of [1] can be formulated as
a single statement about Z/2-equivariant homotopy equivalence between
these spaces, where the Z/2-action is induced by the complex conjuga-
tion. This is also one of the generalizations of a theorem of [9], and it is
already published in [12]. Recently the author notices that the stability
dimensions given in [1] and [12] can be improved by using the truncated
simplicial resolutions invented by J. Mostovoy [15]. In this note we shall
announce about these improvements (cf. [2]).
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1.1 Definitions and notations.

Let K denote one of the fields R or C of real or complex numbers
and let d(K) = dimgK = 1 if K = R and 2 if K = C. Let m and n
be positive integers such that 1 < m < d(K) - (n +1) — 1. We choose
el =[1:0:---:0] € KP™ as the base point of KP". For d(K) < m <
d(K) - (n+ 1) — 1, we denote by Map*(RP™,KP") the space consisting
of all based maps f : (RP™, e®) — (KP",eX), and by Map!(RP™, KP"),
where € € Z/2 = {0, 1} = mo(Map*(RP™, KP")), the corresponding path
component of Map*(RP™, KP"). Similarly, let Map(RP™, KP") denote
the space of all free maps f : RP™ — KP" and Map (RP™, KP") the

corresponding path component of Map(RP™, KP").

We shall use the symbols z; when we refer to complex valued coordi-
nates or variables or when we refer to complex and real valued ones at
the same time while the notation x; will be restricted to the purely real
case.

A map f : RP™ — KP" is called a algebraic map of the degree d if it
can be represented as a rational map of the form f = [fo:---: f,] such
that fo, -, fn € K[20," - , 2] are homogeneous polynomials of the same
degree d with no common real roots except 0,41 = (0,---,0) € R™+1,

We denote by Alg,(RP™, KP") (resp. Alg)(RP™,KP")) the space con-
sisting of all (resp. based) algebraic maps f : RP™ — KP" of de-
gree d. It is easy to see that there are inclusions Alg,(RP™ KP") C
Mapyy, (RP™, KP") and Algy(RP™,KP") C Map,, (RP™,KP"), where
[d]s € Z/2 = {0, 1} denotes the integer d mod 2. Let Ay4(m,n)(K) denote
the space consisting of all (n + 1)-tuples (fo,- -+, fn) € K[z0, -+, 20" ™!
of homogeneous polynomials of degree d with coefficients in K and with-
out non-trivial common real roots (but possibly with non-trivial common
complex ones).

Let A¥(m,n) C Ag(m,n)(K) be the subspace consisting of (n + 1)-
tuples (fo, -+, fn) € Aa(m,n)(K) such that the coefficient of zg in fo
is 1 and 0 in the other fi’s (k # 0). Then there is a natural surjective

projection map
U A (m,n) — Algh(RP™, KP"™).

For m > 2 and g € Algy(RP™ ! KP") a fixed algebraic map, we denote
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by Algs(m,n;g) and F(m,n;g) the spaces defined by
{A1g§<m,n;g> = {f € Algy(RP™, KP") : f|RP™! = g},
F¥(m,n;g9) = {f¢€ Mapyy, (RP™, KP") : fIRP™ ! = g}.

Note that there is a homotopy equivalence F¥(m,n;g) ~ QmKP". Let
A%(m,n;g) C A%(m,n) denote the subspace given by

Ag(m,n; g) = (U5) ™ (Algg (m, 5 g)).
Observe that if an algebraic map f € Alg)(RP™,KP") can be represented
as f = [fo:- - f] for some (fo, -+, fn) € A%(m,n) then the same map

can also be represented as f = [gmfo i+ : Gmfn), Where g, = > 1", 22
So there is an inclusion

Algi(RP™ KP") C Alg’, ,(RP™ KP")

and we can define the stabilization map sq : Af(m,n) — A, ,(m,n) by

Sd<f07 T 7fn) = (gmf(b U 7§mfn)

It is easy to see that there is a commutative diagram
A]ff(m, n) L’ A§+2 (m, n)
vi | Vi |
Alg;(RP™ KP") —~— Alg},,(RP™ KP")

A map f € Alg(RP™ KP") is called an algebraic map of minimal degree
d if f e Algy(RP™,KP") \ Alg; ,(RP™ KP"). It is easy to see that if
g € Algh(RP™ ' KP") is an algebraic map of minimal degree d, then the
restriction

W A% (m,n; g) = Af(m,n; g) = Algh (m, n; g)
is a homeomorphism. Let
iqx : Algy(RP™ KP") = Mapy,, (RP™, KP")
iy - Alg(m,n; g) S F(m,n;g) ~ Q"KP"
denote the inclusions and let
iy = igx o Wy : Ajf(m,n) — Mapjy, (RP™, KP").

be the natural projection.



1.2 The case m = 1.

First, recall the following old result for the case m = 1.
Theorem 1.1 ([10], [20] (cf. [13])). Let n > 2 and d > 1 be integers.

(i) IfK=R andm = 1, the map i : A§(1,n) — Mapjy, (RP', RP") ~
QS™ is a homotopy equivalence up to dimension Dy(d,n), where
Dy (d,n) denotes the integer given by Di(d,n) = (d+1)(n—1) — 1.

Moreover, if n > 3 orn = 2 with d = 1 (mod 2), there is a ho-
motopy equivalence A% ~ J,(QS™), where J;(Q2S™) denotes the d-th
stage James filtration of Q.S™ given by

J(QS™) = Pt u 2D gl gy el c Q5m.

(i) IfK =C andm = 1, the map i§ : AS(1,n) — QS?*! is a homotopy
equivalence up to dimension Dy(d,2n+1) = 2n(d+1)—1 and there
is a homotopy equivalence AS(1,n) ~ Jg(QS2"+1).

Remark. (i) A map f: X — Y is called a homotopy (resp. a homol-
0gy) equivalence up to dimension D if f. : mp(X) — m(Y) (resp.fi :
Hy(X,Z) — Hp(Y,Z)) is an isomorphism for any k¥ < D and an epi-
morphism for k& = D. Similarly, it is called a homotopy (resp. a ho-
mology) equivalence through dimension D if f, : m(X) — m(Y) (resp.
fe: H(X,Z) — Hg(Y,Z)) is an isomorphism for any k£ < D.

(ii) Let G be a finite group and let f : X — Y be a G-equivariant
map. Then a map f : X — Y is called a G-equivariant homotopy
(resp. homology) equivalence up to dimension D if for each subgroup
H C G the induced homomorphism f7 : m(X#) — 7 (YH) (resp.
7 H(XH,Z) — H, (Y™ Z)) is an isomorphism for any k¥ < D and an
epimorphism for k = D.

Similarly, it is called a G-equivariant homotopy (resp. homology) equiv-
alence through dimension D if for each subgroup H C G the induced
homomorphism f7 : 7, (XH) S 7.(YH) (resp. fH : Hy(X",2) S
Hy(YH 7)) is an isomorphism for any k < D.



The complex conjugation on C naturally induces the Z/2-action on
A%(m,n) and S*" ! where we identify S?"1 with the space

S* = {(wo, -+ swa) € TN ful* = 1},
k=0

It is easy to see that AS(m,n)%/? = A®(m,n) and (i$)%/? = 5. Hence,

we also have:

Corollary 1.2 ([10]). If n > 2 and d > 1 are integers, the map i5 :
A%(1,n) — QS is a Z/2-equivariant homotopy equivalence up to di-
mension Di(d,n).

2 The case m > 2.

2.1 The improvements of the stability dimensions.

For a space X, let F/(X,r) denote the configuration space of distinct r
points in X given by F(X,r) = {(x1,--- ,2,) € X" 1 @; # x; if i # j}.
The symmetric group S, of r letters acts on F'(X,r) freely by permuting
coordinates. Let C,.(X) be the configuration space of unordered r-distinct
points in X given by the orbit space C,.(X) = F(X,r)/S,.

It is known ([8], [18]) that there are the stable homotopy equivalence
and the isomorphism of abelian groups

QmgmH \/ D,(R™; S") (stable homotopy equivalence)
r=1

Hy(D,(R™, S, Z) = Hy,_y(C,(R™), (£Z)%)  (k,1> 1),

where we set A" X = X A--- A X (r times), X, = X U {x} ( is the
disjoint base point), and D,(R™,S") = F(R™,r); As, (A" S).
Let Gn]‘f’N;k and Dg(d;m,n) be the abelian group and the positive in-



teger defined by

(

M
G e = D Hie vy (CoR™), (£Z)2V =),

r=1

(0 —m) (| 52]+1) — 1 ifK=R, d<3,

-2 fK=R, d>4

DK(d;m,n): ( ) 1 ) -

Cn-—m+1)([4L]+1) -1 ifK=C, d<3,

\ [ (2n—m+1)d -2 ifK=C, d>4,

where |x| denotes the integer part of a real number x. Note that there
is an isomorphism Hy(QmS™H 7Z) = G2 mary for any k> 1.

Then we have the following results.

Theorem 2.1 (cf. [1]). Let 2 < m < n and let g € Algi(RP™ ! RP")
be an algebraic map of minimal degree d.

(i) The inclusion iyp Algs(m,n; g) — FR(m,n;g) ~ Q™S™ is a ho-
motopy equivalence through dimension Dg(d;m,n) if m+2 < n and
a homology equivalence through dimension Dg(d;m,n) if m+1 = n.

(ii) For any k > 1, Hy(Algy(m,n;g),Z) contains the subgroup G
as a direct summand. Moreover, the induced homomorphism iy, :

m,n;k

Hy(Algi(m,n;g),Z) — H(QQ"S™,Z) is an epimorphism for any
E<(n—m)(d+1)—1.

Theorem 2.2 (cf. [1]). If 2 < m < n are positive integers,
iy : A% (m,n) — Mapyy, (RP™, RP")

is a homotopy equivalence through dimension Dg(d;m,n) if m+2 < n
and a homology equivalence through dimension Dg(d;m,n) if m+1 =n.

Theorem 2.3 (cf. [12]). Let 2 < m < 2n, and let g € Algi(RP™ !, CP")
be an algebraic map of minimal degree d.

(i) The inclusion ilc : Algg(m,n;g) — FS(m,n;g) ~ Q>+ is a
homotopy equivalence through dimension D¢ (d; m,n) if m < 2n and
a homology equivalence through dimension D¢ (d;m,n) if m = 2n.



(ii) Foranyk > 1, Hy(Alg5(m,n; g),Z) contains the subgroup G, o i1k
as a direct summand. Moreover, the induced homomorphism iy ¢, :
H,(Alg5(m,n; g), Z) — Hp(Qm™S?"+1 7) is an epimorphism for any
E<(@2n—m+1)(d+1)—1.

Theorem 2.4 (cf. [12]). If 2 < m < 2n are positive integers,
ig : Ag(m,n) — Map,, (RP™,CP")

is a homotopy equivalence through dimension D¢ (d;m,n) if m < 2n and
a homology equivalence through dimension Dc(d;m,n) if m = 2n.

Note that the complex conjugation on C naturally induces Z/2-actions
on the spaces Alg5(m,n; g) and AS(m,n) as before. In the same way it
also induces a Z/2-action on CP™ and this action extends to actions on
the spaces Map*(RP™, $?"*1) and Map;(RP™, CP"), where we identify
St = {(wg, -+ ,wy,) € C 2 370 wg]? = 1} and regard RP™ as a
7,/ 2-space with the trivial Z/2-action.

Corollary 2.5 (cf. [12]). Let 2 < m < 2n, d > 1 be positive integers and
g € AlgS(RP™' CP™) be a fired algebraic map of the minimal degree d.

(i) If m < 2n, the inclusion map i) : Alg§(m,n; g) — FC(m,n; g) ~
OmS2ntl s g 7./2-equivariant homotopy equivalence through dimen-
sion Dg(d;m,n).

(ii) If m = 2n, the above inclusion map iy is and a Z/2-equivariant
homology equivalence through dimension Dg(d;m,n).

(iii) The map ig : Ag(m,n) — Mapjy, (RP™,CP") is a Z/2-equivariant
homotopy equivalence through dimension Dg(d;m,n) if m < 2n and

a 7./ 2-equivariant homology equivalence through the same dimension
Dg(d;m,n) if m = 2n.

2.2 Conjectures.
Finally we report several related questions.

Conjecture 2.6. Is the projection V5 : A%(m, n) — Algi(RP™,KP") a
homotopy equivalence?



Let ﬁK(d; m,n) denote the integer given by

Pred:m. ) = (n—m)(d+1)—1 if K=R,
ST len—mae@+1) -1 ifK=C.

Conjecture 2.7. Is the map is : A¥(m,n) — Mapyy, (RP™, KP") a
homotopy (or homology) equivalence up to dimension ﬁK(d; m,n)?

Remark. The above conjectures are correct if m = 1.
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