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Abstract. Petrie [9] has shown that all homotopy equivalence between homo-
topy projective spaces admitting effective smooth half-dimensional compact torus
actions should preserve their Pontrjagin classes. In this article, we propose several
problems about the invariance of Pontrjagin classes of torus manifolds, which can
be regarded as a generalization of Petrie’s theorem. In addition, we introduce
known results [1] and their applications.

1. Petrie’s Theorem

A torus manifold, introduced by Hattori and Masuda [5], is a closed smooth
manifold of dimension 2n admitting an effective smooth T n-action with non-empty
fixed point set. Let M be a torus manifold homotopy equivalent to the projective
space CP n of the same dimension. In other words, M is a homotopy projective space
of dimension 2n admitting an effective smooth T n-action because its fixed point set
MTn

is always non-empty; χ(MTn
) = χ(M) = n + 1 6= 0, where χ(X) is the euler

characteristic number of X.

Theorem 1.1 (Petrie [9]). Let M1 and M2 be torus manifolds homotopy equivalent
to CP n. Then, any homotopy equivalence between M1 and M2 preserves their Pontr-
jagin classes, namely, if f : M1 →M2 is a homotopy equivalence, then f ∗(p(M2)) =
p(M1), where p(X) denotes the total Pontrjagin class of X and f ∗ : H∗(M2) →
H∗(M1) is the induced map of f .

More precisely, he has shown that the total Pontrjagin class of the torus homo-
topy projective space M of dimension 2n is (1 + x2)n+1 ∈ H∗(M) = Z[x]/xn+1,
where deg x = 2. Since any cohomology ring isomorphism between two homotopy
projective spaces sends a generator to a generator up to sign, we can conclude that
it should preserve their Pontrjagin classes. Surprisingly, using the theory of Masuda
[6] without hard difficulties, one can show that Theorem 1.1 holds even if we re-
place the condition which Mi is homotopy equivalent to CP n to the condition which
H∗(Mi) is isomorphic to H∗(CP n) as a graded ring for i = 1, 2.

Theorem 1.2. Let M be a torus manifold whose cohomology ring is isomorphic to
H∗(CP n) as a graded ring. Then, its total Pontrjagin class is

(1 + x2)n+1 ∈ H∗(M) = Z[x]/xn+1,

where deg x = 2.
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Motivated by this, we may ask whether any cohomology ring isomorphism pre-
serves the Pontrjagin classes of torus manifolds or not. The purpose of this article is
to propose several problems related on this question and to introduce partial answers
and their applications based on [1].

2. Torus manifolds

In this section, we briefly review torus manifolds following [7]. A torus manifold
is a 2n-dimensional closed connected manifold M with an effective smooth action of
an n-dimensional torus T = (S1)n such that the fixed point set MT is non-empty.
Since dimM = 2 dimT and M is compact, MT is a finite set of isolated points.
A codimension-two connected component of the set fixed pointwisely by a circle
subgroup of T is called a characteristic submanifold of M . Since M is compact,
there are only finitely many characteristic submanifolds, and we denote them by
Mi, i = 1, . . . ,m.

Example 2.1. Let n be a positive integer with n ≥ 2. Let S2n be the 2n-dimensional
sphere identified with the subset {(z1, . . . , zn, y) ∈ Cn×R | |z1|2+· · ·+|zn|2+y2 = 1}
of Cn × R, and define an action of T n := (S1)n on S2n by

(t1, . . . , tn) · (z1, . . . , zn, y) = (t1z1, . . . , tnzn, y),

where S1 is the unit circle in C1. Then this action is effective and smooth, and the
points (0, . . . , 0,±1) are fixed by T n-action. Hence, S2n is a torus manifold. A map

(z1, . . . , zn, y) 7→ (|z1|, . . . , |zn|, y)

induces a homeomorphism from the orbit space S2n/T n onto the manifold with
corners

{(x1, . . . , xn, y) ∈ Rn+1 | x21 + · · ·+ x2n + y2 = 1, x1 ≥ 0, . . . , xn ≥ 0}.
Note that every face of the orbit space S2n/T n is contractible. The facets are images
of characteristic submanifolds {zi = 0} of S2n (i = 1, . . . , n) under the quotient map
above and the intersection of the n codimension-one faces, called facets, consists of
two points (0, . . . , 0,±1).

A torus manifold M is said to be locally standard if every point in M has an
invariant neighborhood U weakly equivariantly diffeomorphic to an open subsetW ⊂
Cn invariant under the standard T -action on Cn, namely, there is an automorphism
ψ : T → T and a diffeomorphism f : U → V such that f(ty) = ψ(t)f(y) for all t ∈ T
and y ∈ U . Let M be a locally standard torus manifold. Let Q := M/T denote the
orbit space of M and π : M → Q the quotient projection. Then, Q can be regarded
as a manifold with corners, and faces of Q can be defined in a natural way. We
note that the projection π : M → Q maps every k-dimensional orbit to a point in
the interior of a codimension-k face of Q for all k = 0, . . . , n. We set Qi := π(Mi).
Then, Qi is a codimension-one face of Q, called a facet of Q. Since M is locally
standard, any point in Q has a neighborhood diffeomorphic to an open subset in
the positive cone Rn

≥0 := {(x1, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, . . . , n}. Such manifolds
are called nice manifolds with corners.
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Let Q be a compact nice manifold with corners. Faces of Q are defined naturally.
A nice manifold Q with corners is called a homology cell if all faces of Q, including
Q itself, are acyclic, namely, their reduced cohomology rings vanish. We also say
that Q is a homology polytope if it is a homology cell and any multiple intersection
of faces is acyclic whenever it is non-empty. A simple polytope provides a typical
example of homology polytope and the orbit space of S2n/T n in Example 2.1 is a
homology cell but not a homology polytope.

It is shown in [7] that if Hodd(M) = 0 for a torus manifold M , then M is locally
standard. In addition, they have shown the following theorem.

Theorem 2.2 (Masuda-Panov [7]). Let M be a torus manifold and Q the orbit
space of M . Then

(1) Q is a homology cell if and only if Hodd(M) = 0, and
(2) Q is a homology polytope if and only if H∗(M) is generated by H2(M) as a

ring.

3. Invariance of Pontrjagin classes of torus manifolds

We recall a torus manifold homotopy equivalent to the projective space in The-
orem 1.1. We note that the orbit space of the torus homotopy projective spaces is
a homology polytope. It is natural to ask whether Theorem 1.1 still holds when we
replace a torus homotopy projective space to a torus manifold whose orbit space is
a homology polytope (or a homology cell), namely, we have the following problems.

Problem 3.1. Let M1 and M2 be torus manifolds whose orbit spaces are homology
polytopes or homology cells. Let f : M1 → M2 be a homotopy equivalence. Then is
it true that

f ∗(p(M2)) = p(M1)?

As we discussed in Section 1, we can also ask the following stronger question.

Problem 3.2. Let M1 and M2 be torus manifolds whose orbit spaces are homology
polytopes or homology cells. Let ϕ : H∗(M2) → H∗(M1) be a ring isomorphism.
Then is it true that

ϕ(p(M2)) = p(M1)?

Unfortunately, the answer of Problem 3.2 is negative in general. We have the
following counter example.

Example 3.3. Let

M1 = S7 ×S1 S(C1
2 ⊕ R9) and M2 = S7 ×S1 S(C4

2 ⊕ R1),

where S(C` ⊕ Rm) ⊂ C` ⊕ Rm stands the unit sphere, and Cρ is C with S1-action
by t · z = tρz. The author and Kuroki [2] have shown that H∗(M1) ∼= H∗(M2) =
Z[x, y]/〈x4, z(z + 2x)4〉 with deg x = 2, deg z = 8, and p1(M1) = 4x2 and p1(M2) =
16x2. One can easily check that both M1 and M2 are torus manifolds, and since the
generators have even degree, their orbit spaces are homology cells (but not homology
polytopes). Because of the degree of generators, any cohomology ring isomorphism
ϕ : H∗(M2) → H∗(M1) sends a degree-two generator to a degree-two generator up
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to sign. Hence, ϕ(p1(M2)) 6= p1(M1). Hence, it gives us the negative answer to
Problem 3.2. But we still do not know whether Problem 3.2 is negative on the case
where orbit spaces are homology polytopes.

We also have some partial answers to the problems. We note that the product of
projective spaces

∏h
i=1 CP ni is also torus manifold whose orbit space is a product of

simplices
∏h

i=1 ∆ni . It is easy to show that H∗(
∏h

i=1CP ni) is generated by degree
two elements.

Theorem 3.4 (Choi [1]). Let M1 and M2 be torus manifolds whose cohomology

rings are isomorphic to H∗(
∏h

i=1CP ni). Then, any cohomology ring isomorphism
between them preserves their Pontrjagin classes.

We remark that Theorem 3.4 generalizes Theorem 1.1 strictly.
For a complex vector bundle E, we denote the total space of its projectivization

by P (E). A generalized Bott tower of height h is a sequence of projective bundles

(3.1) Bh
πh−→ Bh−1

πh−1−→ · · · π2−→ B1
π1−→ B0 = {a point},

where each πi : Bi = P (C⊕ξi)→ Bi−1 and ξi is the Whitney sum of ni (≥ 1) complex
line bundles over Bi−1 for i = 1, . . . , h. We call Bh an h-stage generalized Bott
manifold. Obviously, a complex projective space CP n is an one-stage generalized
Bott manifold. When all fibers in (3.1) are CP 1, namely, ni = 1 for all i, Bh is called
a Bott manifold. A closed smooth manifold is called a cohomology Bott manifold if
its cohomology ring is isomorphic to that of some Bott manifolds, and is called a
torus cohomology Bott manifold if it is both a cohomology Bott manifold and a torus
manifold. We note that a Bott manifold itself is a torus cohomology Bott manifold.
In addition, all manifolds homotopy equivalent to Bott manifolds are cohomology
Bott manifolds.

Theorem 3.5 (Choi [1]). Let M1 and M2 be torus cohomology Bott manifolds. Then
any ring isomorphism ϕ : H∗(M1) → H∗(M2) preserves their Pontrjagin classes,
namely, ϕ(p(M1)) = p(M2).

We remark that both Theorems 3.4 and 3.5 provide affirmative evidences to Prob-
lems 3.1 and 3.2.

4. Applications

One of the most interesting problems in Toric topology is the topological clas-
sification of toric manifolds. A toric manifold is a non-singular compact complex
algebraic variety with an algebraic torus action having a dense orbit. Clearly, a toric
manifold is a torus manifold. Interestingly, many recent research provide evidences
for toric manifolds to be classified by their cohomology rings. In general, the coho-
mology ring as an invariant is too weak to determine the topological type. However,
in the category of toric manifolds, we do not know any examples of two distinct
toric manifold having the same cohomology rings because of their tori-symmetries.
Hence, it raises the following problem, called the cohomological rigidity problem for
toric manifolds.
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Problem 4.1 (Cohomological rigidity problem for toric manifolds). Let M1 and M2

be two toric manifolds such that H∗(M1) ∼= H∗(M2) as graded rings. Then are they
diffeomorphic (or homeomorphic)?

See [8] for more details. By the classical theory on the low dimensional manifolds
such as [4], the cohomological rigidity holds for all toric manifolds up to 4 dimension
since toric manifolds are simply connected. In high dimensional case, this problem
is still open.

We note that both a product of projective spaces and a Bott manifold are not
only torus manifolds but also toric manifolds. Hence, by combining Theorems 3.4
and 3.5 with the result of Sullivan [10], we can say the finiteness of such manifolds
having the isomorphic cohomology rings;

Corollary 4.2. There are at most a finite number of torus manifolds homotopy
equivalent to the given Bott manifold or the given product of projective spaces.

So the corollary also provides affirmative evidences of cohomological rigidity of
toric manifolds.

We remark that any diffeomorphism between two closed smooth manifolds pre-
serves their Pontrjagin classes. Hence, we can ask the following problem, too.

Problem 4.3 (Strong cohomological rigidity problem for Bott manifolds). Let Bn

and B′n be two Bott manifolds, and φ : H∗(Bn) → H∗(B′n) an isomorphism as a
graded ring. Then, there is a diffeomorphism f : B′n → Bn such that f ∗ = φ.

On the other hand, it is well-known that the invariance of Stifel-Whitney classes
for a closed manifold whose cohomology ring is generated by the same degree ele-
ments.

Theorem 4.4 (Choi-Masuda-Suh [3]). Suppose that H∗(M) is generated by Hr(M)
for some r as a ring and let M ′ be another connected closed manifold of the same
dimension such that H∗(M ′) is isomorphic to H∗(M) as a ring. Then ϕ(w(M ′)) =
w(M) for any ring isomorphism ϕ : H∗(M ′)→ H∗(M), where w(X) denotes for the
total Stifel-Whitney class of X.

Since any diffeomorphism preserves the total Stiefel-Whintey class, the above
theorem also supports to Problem 4.3 affirmatively.
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