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1. INTRODUCTION

In a joint 2006 paper [2|, E. Pedersen and I proved a certain stability result for
controlled L-groups. The proof depended on a construction called the Alexander trick.
In this note I describe a modified Alexander trick which can be used to give a built-
in squeezing mechanism of a certain LL-space. This should replace the “barycentric

subdivision argument” used in [4].

2. ITERATED MAPPING CYLINDERS

Let X be a finite polyhedron, and M be a topological space. We are interested in
amap p: M — X which has an iterated mapping cylinder decomposition in the sense
of Hatcher [1]: there is a partial order on the set of the vertices of X such that, for
each simplex A of X,

(1) the partial order restricts to a total order of the vertices of A
Vo <V < -+ < Uy,
(2) p~'(A) is the iterated mapping cylinder of a sequence of maps

F, —F, —...—F, ,

(3) the restriction p|p~t(A) is the natural map induced from the iterated mapping
cylinder structure of p~*(A) above and the iterated mapping cylinder structure

of A coming from the sequence

{ve} — {vi} — ... — {v.}.

To simplify the situation we assume that X is an n-simplex A with vertices vg, vy,
.., Up. The edge |vg,v1] is the mapping cylinder vy x {0 < ¢; < 1}/(vg, 1) ~ vy, the
face |vg, v1,vs| is the mapping cylinder |vg, v1| X {0 < t5 < 1}/(x,1) ~ vq, ..., and
A = |vg,...,v,| is the mapping cylinder |vg,...,v,—1] X {0 < t,, < 1}/(x,1) ~ vp.
Thus we can assign a point in A to each (t1,...,t,) € [0,1]". (t1,...,t,) is pseudo-

coordinates of the point in the sense that the coordinates are not uniquely determined
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by the point. If (Ag,...,\,) are the barycentric coordinates of a point z € A, i.e.
x=> Nv; (Ao+ -+ A, = 1), then ¢; is equal to \;/(Ag + - -+ + \;), when defined,
and is indeterminate when \g = --- = \; = 0.
For each vertex v of A, define a simplicial map s” : A — A by:
v for a vertex u with u < v ,
s(u) =
U for a vertex u with u > v .
For example, s is the identity map, and s is the constant map which sends every
point of A to v,. A strong deformation retraction sy : A — A is defined by s} (x) =
(1 —t)z + ts¥(x), where z € A and t € [0,1]. Note that this strong deformation
retraction s; is covered by a deformation s} on M, since M has an iterated mapping
cylinder structure. Also note that s;” (¢ > 0) changes the t; pseudo-coordinate but

fixes the other pseudo-cordinates t; (i # j).

3. ALEXANDER TRICKS

Let M be an iterated mapping cylinder of maps
Fy —F,) — ... —F, ,

and p: M — A = |vg,...,v,| be the projection from M to the ordered n-simplex A as
in the previous section. Suppose ¢ is a quadratic Poincaré (n + 2)-ad on p : M — A,
such that d;c is a quadratic Poincaré (n + 1)-ad on p|p~1(9;A), i = 0,...,n ([4] [5]).
Such an (n 4 2)-ad c¢ is said to be proper on A or simply proper.

We will describe a version of Alexander trick for such a proper (n + 2)-ad c. First
fix a positive integer N (“height”) and pick up a vertex v = v; of A toward which
we try to squeeze the objects. Triangulate the closed interval Iy = [0, N] using unit
intervals and represent each simplex by its barycenter. Use these points to construct
the symmetric Poincaré triad e of (Ix;0,N). Take the tensor product of ¢ and e and
denote it by ¢ x Iy. This is a geometric object on M x [y which gives a cobordism
between ¢ x 0 and the (n + 2)-ad ¢ defined by:

d=cx NUOjex Iy,
8ic><NU(‘9j_18,~c><IN 1fl<],
did = 9ic x 0 if i = j,

@cxNU@-&-cxIN lf7/>]
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So this construction does not change the j-th face d;c = 0;c x 0. If ¢ # j, then one
can perform the same construction to 0;c to get (0;c)’, which coincides with 0;c.
DeﬁnemapsS}(,:Ax]NeAxINandg}(,:]\/[x[N—>M><Ibe

S(w,t) = (spy(@), 1) and S (w,1) = (5 (w), 1) -
Define an ordered (n + 1)-simplex A" (C A x Iy) by
A" = ((vg, ..., v;) x 0) % ((vj) X N)* ((vj11,...,0,) X 0) .
Here * denotes the join of simplices. Note that

SHA X In) = | (spn((vo,- - 05) X t) % ((vj41, .-, vm) X 1)

0<t<N

A = (shn((o, - yvy) X ) % (01, va) X 0).

0<t<N

Therefore, the obvious vertical retraction
(Vjg1s .-y Un) X Iy — (Vjg1, ..., Un) X 0
induces a map RY, from the image S% (A X Iy) to A" Let
q=p X 11y| : Mans1 = (p x 17,) (A1) — AP
denote the pull-back of p : M — A by the projection map
o AL GO N g PRI A

The map RY, is covered by a map RY, : S%(M X Iy) — Mans1.

Let us look at the relation between ¢ and ¢ (and its functorial image (R% 0S%).(¢'))

more closely. As in the pictures above, define a subset A’ of (A x Iy) by

A/IAXNuajAXIN.
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The (n+ 2)-ad ¢ lies over A’. By glueing some of the faces, let us regard ¢ x Iy as an

(n + 3)-ad whose faces are
800XIN, ...,aj_chIN, C,,CXO, aj_HCX]N, ...,anCX]N .

The functorial image of this (n + 3)-ad by the composition ﬁvN o 5}(, defines a proper
quadratic Poincaré (n + 3)-ad C%(c) on q : Man+1 — A"

The face (R%05%).(¢') is a proper quadratic Poincaré (n+2)-ad on q|q ' (R% (5% (A)),
and is denoted A% (c). Its functorial image m.(A% (c)) will be denoted a%(c). It is a
proper on A. The functorial image m.(C¥(c)) can be regarded as a Poincaré cobor-
dism between ¢ and a%/(c). The operation described above is called the Alezander
trick (of height N) at the vertex v = v;. Note that a% (c) has a fine control in the ¢;
pseudo-coordinate. Also note that 0;a%(c) = a}(9;c) = 0;¢, where v = v,.

If we successively apply the Alexander tricks at v, ..., v1, vy to the given proper
quadratic Poincaré (n+2)-ad ¢, then we get finely controlled object which is cobordant
to c. This process is called “squeezing” of “shrinking”. When we use the same height

N at every vertex, then the squeezed object obtained from ¢ will be denoted Sy (c):

Sn(e) = ay(ay (... (ay(c))...)) -

The cobordism between ¢ and Sy (c¢) constructed above is called the standard cobordism.

The squeezing operation Sy preserves the face relation:

Proposition 3.1. 9;,Sn(c) is equal to Sy(0;¢) . Furthermore, the standard cobordism

between O;c and 0;Sn(c) is equal to the standard cobordism between O;c and Sy(0;c).

4. L-SPACES

The squeezing operation seems to justify the following simple definition of the co-
efficient L-space L, (p : M — X) for the generalized homology H,(X;L(p)), where
p: M — X is a map from a space to a finite polyhedron which has an iterated
mapping cylinder decomposition and n is an integer. It is a A-set; a k-simplex is an
(n + k)-dimensional proper quadratic Poincaré (k + 2)-ad (¢; doc, . . ., Okc) on the pull-
back M — (A; A, ..., 0:A), where A is a k-simplex and 7 : A — Al is an affine
surjection from A to an [-dimensional simplex A’ of X (I < k) induced by an order(<)
preserving map between the vertices.

Two such simplices (¢, 7 : A — Al) and (¢, 7" : A’ — A!) are identified when there

is an affine homeomorphism ¢ : A — A’ of ordered simplices such that 7 = 7’ 0 ¢ and

d.(c) = .



Note that the squeezing operation Sy defines a simplicial homotopy of the identity
map of L, (p : M — X) to a simplicial map whose image is contained in a subset made
up of simplices of ‘small radius’ measured on X, if N is large. Thus this space has a

built-in ‘squeezing’ mechanism.
AR(A43(9)
Cx (AR (9)

Ay ()

Let us consider the special case when X is a single point. There is a similar A-set
L! (M) whose k-simplex is an (n+ k)-dimensional quadratic Poincaré (k+2)-ad ¢ on M
that is special, i.e. 9y0; ...0kc is 0. mo(ILl (p : M — x)) is isomorphic to L(Zm(M)).

There is a map L,,(M — %) — L/ (M) that sends a k-simplex (¢, 7) to its functorial
image m.(c). A map in the reverse direction can be constructed as follows. Let ¢
be a k-simplex of L/ (M). It is made up of three type of things: (1) ‘points’ in M
(generators of free modules), (2) paths with coefficients connecting the generators, and
(3) homotopies of certain paths. Since c is special, one can make a 1-1 correspondence
between its faces (including c itself) and the faces of a standard k-simplex A (including
A itself), and can make copies of the faces of ¢ on the sets {barycenters} x M C A x M
and realizing the morphisms between adjacent pieces by using the original paths in ¢ in
the M-direction and the path connecting two adjacent barycenters in the A-direction
as components. Similarly for homotopies of paths. These are homotopy inverses of

each other.




Therefore, L, (p : M — X) defined above may give a convenient description of

LL-homology groups.
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